conv_op.cc 18.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46 47
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
57

Y
Yang Yu 已提交
58
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
59
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
60
                    "channels * groups.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
62
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
63 64 65
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
67 68 69
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
70
  }
71
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
72
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
73 74
}

75 76
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
77 78
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
79
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
80
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
81
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
82 83
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
84
#ifdef PADDLE_WITH_CUDA
85
  if (platform::CanCUDNNBeUsed(ctx)) {
86
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
87 88
  }
#endif
89
#ifdef PADDLE_WITH_MKLDNN
90
  if (library == framework::LibraryType::kPlain &&
91
      platform::CanMKLDNNBeUsed(ctx)) {
92
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
93
    layout = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
94
    customized_type_value = kConvMKLDNNFP32;
95
  }
96
#endif
97

K
Kexin Zhao 已提交
98 99 100 101 102 103 104 105
  auto input_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Input")->type());
  auto filter_data_type =
      framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
  PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                    "input and filter data type should be consistent");

  if (input_data_type == framework::proto::VarType::FP16) {
106
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
107 108 109
                      "float16 can only be used when CUDNN is used");
  }

110
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
X
Xin Pan 已提交
111
                                 library, customized_type_value);
112 113
}

Y
Yu Yang 已提交
114
void Conv2DOpMaker::Make() {
115 116 117 118
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
119 120
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
121 122 123 124
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
125
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
126
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
127 128
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
129 130
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
131
           "input image channels divided by the groups.");
132 133 134 135 136
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
C
chengduoZH 已提交
137
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
138
            "(Tensor) The output tensor of convolution operator. "
139
            "The format of output tensor is also NCHW.");
140 141 142
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
143
           "Used with fuse_residual_connection fusion.")
144
      .AsDispensable();
C
chengduoZH 已提交
145 146 147 148
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
149
      .SetDefault({1, 1});
C
chengduoZH 已提交
150 151 152 153
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
154 155 156
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
157
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
158 159 160 161
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
162
      .SetDefault(1);
C
chengduoZH 已提交
163
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
164 165
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
166
                            "convolution operator.")
C
chengduoZH 已提交
167
      .SetDefault({1, 1});
168 169 170 171
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
172 173 174
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
175 176
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
177
  AddAttr<bool>("fuse_residual_connection",
178
                "(bool, default false) Only used in mkldnn kernel. Used "
179 180
                "whenever convolution output is as an input to residual "
                "connection.")
181
      .SetDefault(false);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
198 199 200 201 202
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
203
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
204 205
Convolution Operator.

C
chengduoZH 已提交
206
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
207
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
208
parameters is checked in the infer-shape.
C
chengduoZH 已提交
209
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
210
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
211 212 213 214 215 216
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
217 218 219 220
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
221 222
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
223
  Output:
C
chengduoZH 已提交
224 225 226 227 228 229
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
230
)DOC");
Q
qingqing01 已提交
231
  Apply();
C
chengduoZH 已提交
232 233
}

Y
Yu Yang 已提交
234
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
235 236
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
237
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
238
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
239 240 241
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
242
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
243
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
244 245
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
246 247 248
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
249 250
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
251
            "(Tensor) The output tensor of convolution operator."
252
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
253 254 255 256
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
257
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
258 259 260 261
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
262 263 264
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
265
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
266 267 268 269
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
270
      .SetDefault(1);
C
chengduoZH 已提交
271
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
272 273
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
274
                            "convolution operator.")
C
chengduoZH 已提交
275
      .SetDefault({1, 1, 1});
276 277 278 279
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
280 281 282
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
298 299 300 301 302
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
303
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
304 305
Convolution3D Operator.

C
chengduoZH 已提交
306
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
307
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
308
parameters is checked in the infer-shape.
C
chengduoZH 已提交
309
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
310
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
311 312 313 314 315 316
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
317 318 319 320
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
321 322
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
323
  Output:
C
chengduoZH 已提交
324 325 326 327 328 329 330
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
331
)DOC");
Q
qingqing01 已提交
332
  Apply();
C
chengduoZH 已提交
333 334
}

C
chengduoZH 已提交
335 336 337 338 339 340 341 342 343 344 345
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

346 347
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
348 349
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
350
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
351 352 353 354
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
355
#ifdef PADDLE_WITH_CUDA
356 357
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
358 359
  }
#endif
360 361 362 363
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
364
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
365
    customized_type_value = kConvMKLDNNFP32;
366
  }
367
#endif
368 369 370

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
X
Xin Pan 已提交
371
      layout_, library_, customized_type_value);
372 373
}

C
chengduoZH 已提交
374 375 376 377
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
378
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
C
chengduo 已提交
379
                  ops::ConvOpInferVarType,
380 381
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
382 383

// depthwise convolution op
Y
Yang Yang 已提交
384
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
385 386
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
387

Y
Yang Yang 已提交
388
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
389
                  ops::ConvOpInferVarType,
390 391
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
392

393 394
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
395
REGISTER_OP_CPU_KERNEL(
396
    depthwise_conv2d,
X
xzl 已提交
397 398 399 400
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
401
    depthwise_conv2d_grad,
X
xzl 已提交
402 403
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
404

C
chengduoZH 已提交
405
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
406 407 408 409 410 411
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
412 413

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
414 415 416 417 418 419
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);