analyzer_lac_tester.cc 6.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
16

T
tensor-tang 已提交
17 18 19
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
20

T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
81

T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
93

T
tensor-tang 已提交
94 95 96 97 98 99
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.dtype = PaddleDType::INT64;
T
Tao Luo 已提交
100
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data}, one_batch.lod);
T
tensor-tang 已提交
101 102 103
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
104

T
Tao Luo 已提交
105
void SetConfig(AnalysisConfig *cfg) {
106 107 108 109
  cfg->SetModel(FLAGS_infer_model);
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
T
Tao Luo 已提交
110
}
L
luotao1 已提交
111

T
Tao Luo 已提交
112 113 114 115 116 117 118 119
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_datas.size() : 1;
  LOG(INFO) << "number of samples: " << epoch;
  for (int bid = 0; bid < epoch; ++bid) {
    GetOneBatch(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
T
tensor-tang 已提交
120
  }
T
Tao Luo 已提交
121
}
T
tensor-tang 已提交
122

T
Tao Luo 已提交
123 124 125 126
// Easy for profiling independently.
TEST(Analyzer_LAC, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
127
  std::vector<std::vector<PaddleTensor>> outputs;
T
tensor-tang 已提交
128

T
Tao Luo 已提交
129 130
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
131 132
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
tensor-tang 已提交
133

T
Tao Luo 已提交
134 135 136 137 138 139
  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    // the first inference result
    const int64_t lac_ref_data[] = {
        24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25,
        44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14,
        15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
140 141 142 143
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    auto output = outputs.back();
    PADDLE_ENFORCE_EQ(output.size(), 1UL);
    size_t size = GetSize(output[0]);
T
Tao Luo 已提交
144 145
    size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
    PADDLE_ENFORCE_GE(size, batch1_size);
146
    int64_t *pdata = static_cast<int64_t *>(output[0].data.data());
T
Tao Luo 已提交
147 148
    for (size_t i = 0; i < batch1_size; ++i) {
      EXPECT_EQ(pdata[i], lac_ref_data[i]);
T
tensor-tang 已提交
149
    }
T
tensor-tang 已提交
150
  }
T
tensor-tang 已提交
151
}
T
tensor-tang 已提交
152

T
Tao Luo 已提交
153 154 155 156 157 158
// Check the fuse status
TEST(Analyzer_LAC, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  int num_ops;
159 160 161
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
Tao Luo 已提交
162 163 164 165 166
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
  EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
  EXPECT_EQ(num_ops, 11);
T
tensor-tang 已提交
167
}
T
tensor-tang 已提交
168

T
Tao Luo 已提交
169 170 171 172 173 174 175
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_LAC, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
176 177
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
T
tensor-tang 已提交
178 179
}

L
luotao1 已提交
180 181 182 183 184 185 186 187 188 189 190
// Compare Deterministic result
TEST(Analyzer_LAC, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

T
tensor-tang 已提交
191 192 193
}  // namespace analysis
}  // namespace inference
}  // namespace paddle