io.py 20.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yu Yang 已提交
16
from .. import core
T
typhoonzero 已提交
17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
Y
Yu Yang 已提交
18
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
19 20
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
21
from ..executor import global_scope
Y
Yu Yang 已提交
22

Y
Yu Yang 已提交
23 24
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
F
fengjiayi 已提交
25 26
    'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
    'Preprocessor'
Y
Yu Yang 已提交
27
]
Y
Yu Yang 已提交
28 29 30 31 32 33 34 35 36 37


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
38
    **Data Layer**
Y
Yu Yang 已提交
39

K
kavyasrinet 已提交
40
    This function takes in the input and based on whether data has
C
caoying03 已提交
41
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
42
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
43
    following operators in the graph.
Y
Yu Yang 已提交
44 45 46 47

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
77
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
78 79 80 81 82
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
83 84
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
85
    return data_var
T
typhoonzero 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

Y
Yancey1989 已提交
117
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
118
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
119
        self.inputs = inputs
T
typhoonzero 已提交
120 121 122
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
123 124
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
125
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
139 140 141 142 143 144 145 146
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
147 148
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
149 150 151

        return params, grads

T
typhoonzero 已提交
152 153 154 155 156 157 158
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
159 160 161 162
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
T
typhoonzero 已提交
163
        empty_block = Program().global_block()
T
typhoonzero 已提交
164 165

        parent_block.append_op(
166
            type='listen_and_serv',
Y
Yancey1989 已提交
167
            inputs={"X": self.inputs},
T
typhoonzero 已提交
168 169 170 171
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
172
                'OptimizeBlock': current_block,
173 174
                'PrefetchBlock': empty_block,
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
175
                'grad_to_block_id': [""]
T
typhoonzero 已提交
176 177 178
            })


T
typhoonzero 已提交
179
def Send(endpoints, send_vars, get_vars=None):
T
typhoonzero 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
195
    endpoints = list(set(epmap))
T
typhoonzero 已提交
196 197

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
198 199
    rpc_client_var = default_main_program().global_block().create_var(
        name="RPC_CLIENT_VAR", persistable=True, type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
200 201 202 203 204
    if not get_vars:
        get_vars = []
        for s in send_vars:
            v = helper.create_tmp_variable(dtype=s.dtype, stop_gradient=True)
            get_vars.append(v)
Y
Yancey1989 已提交
205

T
typhoonzero 已提交
206 207 208
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
209 210
        outputs={"Out": get_vars,
                 "RPCClient": rpc_client_var},
T
typhoonzero 已提交
211 212
        attrs={"endpoints": endpoints,
               "epmap": epmap})
T
typhoonzero 已提交
213
    return get_vars
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
242 243


Y
Refine  
Yu Yang 已提交
244 245 246 247 248 249 250 251 252 253
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
254 255
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
256 257 258
    return reader


Y
Yu Yang 已提交
259 260 261 262 263
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
264 265 266 267
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
284
    new_op = block.append_op(
F
fengjiayi 已提交
285 286 287
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
288
        attrs=op.all_attrs())
F
fengjiayi 已提交
289
    return new_op
Y
Yu Yang 已提交
290 291


F
fengjiayi 已提交
292 293 294 295 296
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
297
                       for_parallel=True):
F
fengjiayi 已提交
298 299 300 301 302 303 304 305 306 307 308
    """
    Open a RecordIO file

    This layer takes a RecordIO file to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from the given RecordIO file.

    Args:
       filename(str): The RecordIO file's name.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
309
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable via which we can get RecordIO file data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.open_recordio_file(
                                          filename='./data.recordio',
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0],
                                          dtypes=['float32', 'int64'])

         # Via the reader, we can use 'read_file' layer to get data:
         image, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
352 353
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
354 355 356 357 358

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

    if for_parallel:
J
JiayiFeng 已提交
359
        main_prog_var = parallel(reader=main_prog_var)
F
fengjiayi 已提交
360

F
fengjiayi 已提交
361
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
362 363


364 365 366 367 368
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
               thread_num,
F
fengjiayi 已提交
369 370
               buffer_size=None,
               pass_num=1,
F
fengjiayi 已提交
371
               for_parallel=True):
F
fengjiayi 已提交
372 373 374
    """
    Open files

F
fengjiayi 已提交
375 376 377
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
378 379 380 381 382 383 384 385

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.
F
fengjiayi 已提交
386
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
387 388
       for_parallel(Bool): Set it as True if you are going to run 
            subsequent operators in parallel.
F
fengjiayi 已提交
389 390 391 392 393 394 395

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
396
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
397
                                                     './data2.recordio'],
F
fengjiayi 已提交
398 399 400 401 402
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'],
                                             thread_num=2,
                                             buffer_size=2)
F
fengjiayi 已提交
403 404

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
405
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
406
    """
407 408
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
409 410
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
411 412 413 414 415 416 417 418
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
419
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
420
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
421
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
F
fengjiayi 已提交
422 423
    startup_blk.append_op(
        type='open_files',
F
fengjiayi 已提交
424
        outputs={'Out': [startup_reader]},
F
fengjiayi 已提交
425 426 427 428
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
429
            'file_names': filenames,
430 431
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
432 433
        })

F
fengjiayi 已提交
434 435 436 437 438 439 440
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
441

F
fengjiayi 已提交
442
    if for_parallel:
J
JiayiFeng 已提交
443
        main_prog_reader = parallel(reader=main_prog_reader)
F
fengjiayi 已提交
444

F
fengjiayi 已提交
445 446 447
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
448
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
449 450 451
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
452
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
453 454 455 456 457
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
458 459 460 461
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
462 463


464 465
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
466 467 468 469 470 471 472 473 474 475
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
476
def shuffle(reader, buffer_size):
477 478
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
479 480


J
JiayiFeng 已提交
481 482 483 484 485
def batch(reader, batch_size):
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


486
def double_buffer(reader, place=None, name=None):
Y
Yu Yang 已提交
487 488 489
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
490 491
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
492 493


F
fengjiayi 已提交
494
def multi_pass(reader, pass_num):
495 496
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
497 498


J
JiayiFeng 已提交
499
def parallel(reader):
J
JiayiFeng 已提交
500 501
    return __create_shared_decorated_reader__('create_threaded_reader', reader,
                                              {})
F
fengjiayi 已提交
502 503


Y
Yu Yang 已提交
504 505 506 507 508
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
509
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
510 511 512 513 514 515 516
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561


class Preprocessor(object):
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

    def is_completed(self):
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
        if not self.is_completed():
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
562 563 564 565
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
566
        source_vars = []
F
fengjiayi 已提交
567 568 569
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
570
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
571
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)