io.py 8.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from .. import core
Y
Yu Yang 已提交
16 17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
18 19
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21 22 23 24
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
    'read_file'
]
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33 34


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
35
    **Data Layer**
Y
Yu Yang 已提交
36

K
kavyasrinet 已提交
37
    This function takes in the input and based on whether data has
C
caoying03 已提交
38
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
39
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
40
    following operators in the graph.
Y
Yu Yang 已提交
41 42 43 44

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       main_program(Program): Name of the main program that calls this
       startup_program(Program): Name of the startup program
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
        lod_level=lod_level)
T
typhoonzero 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

T
WIP  
typhoonzero 已提交
114
    def __init__(self, endpoint, fan_in=1, optimizer_mode=True):
115
        self.helper = LayerHelper("listen_and_serv")
T
typhoonzero 已提交
116 117 118 119
        self.inputs = []
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
120 121
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
122
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
136 137 138 139 140 141 142 143
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
144 145
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
146 147 148

        return params, grads

T
typhoonzero 已提交
149 150 151 152 153 154 155
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
156 157 158 159 160 161
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        params, grads = self.get_params_and_grads()
T
typhoonzero 已提交
162 163
        param_names = [p.name for p in params]
        grad_names = [g.name for g in grads]
T
typhoonzero 已提交
164
        parent_block.append_op(
165
            type='listen_and_serv',
T
typhoonzero 已提交
166 167 168 169 170
            inputs={},
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
171 172
                'ParamList': param_names,
                'GradList': grad_names,
T
typhoonzero 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                'OptimizeBlock': current_block
            })


def Send(endpoints, send_vars, get_vars):
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
194
    endpoints = list(set(epmap))
T
typhoonzero 已提交
195 196 197 198 199 200 201 202

    helper = LayerHelper("Send", **locals())
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282


def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
    return new_var


def open_recordio_file(filename, shapes, lod_levels, dtypes):
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    return _copy_reader_var_(default_main_program().current_block(),
                             startup_var)


def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
        for i in range(len(file_obj.desc.shapes()))
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out