build_strategy.cc 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29 30
DECLARE_bool(use_mkldnn);

31 32 33 34
namespace paddle {
namespace framework {
namespace details {

35
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
36 37
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
38
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
39
  // don't need to append it here.
Y
Yancey1989 已提交
40
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
41 42
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
43 44
}

C
chengduo 已提交
45 46 47 48 49 50
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

51 52 53 54
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
55
    ResolveOptionConfliction();
C
chengduo 已提交
56

C
chengduo 已提交
57 58 59 60 61 62 63
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
64

65
    AppendAddReaderDependencyPass();
C
chengduo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
79

C
chengduo 已提交
80 81
    SetCollectiveContext();
  }
82

C
chengduo 已提交
83 84 85
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
86
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
87
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
88 89
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
90
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
91 92 93
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
94
    }
C
chengduo 已提交
95
    if (strategy_.is_distribution_) {
C
chengduo 已提交
96
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
97 98 99
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
100
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
101 102 103
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
104
    }
C
chengduo 已提交
105
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
106
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
107 108 109
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
110
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
111 112
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
113
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
114
    }
C
chengduo 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
128 129
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
130 131 132 133
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
134 135
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
136
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
137
    }
C
chengduo 已提交
138
  }
139

C
chengduo 已提交
140 141 142 143 144 145
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
146

C
chengduo 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
162

C
chengduo 已提交
163 164 165
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
166
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
Z
Zhang Ting 已提交
167
    AppendPassWithCheck(strategy_.fuse_bn_add_act_ops_, "fuse_bn_add_act_pass");
168
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
169 170
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
#endif
C
chengduo 已提交
171 172
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
173
    // for single card training, fuse_all_reduce_ops is unnecessary.
174
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
175 176
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
177
    // Fuse all the optimization operators.
C
chengduo 已提交
178 179 180
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
181
    if (strategy_.fuse_all_optimizer_ops_ == true) {
182 183 184
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
185
    }
C
chengduo 已提交
186
  }
C
chengduo 已提交
187

C
chengduo 已提交
188 189 190 191
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
192 193 194 195 196 197 198
    PADDLE_ENFORCE_GE(
        strategy_.trainer_id_, 0,
        platform::errors::InvalidArgument(
            "The trainer_id_ of strategy_ must be greater than or equal to 0, "
            "but received strategy_.trainer_id_ = %d.",
            strategy_.trainer_id_));

C
chengduo 已提交
199
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
200 201 202 203 204 205 206 207 208 209
      PADDLE_ENFORCE_LT(
          static_cast<size_t>(strategy_.trainer_id_),
          strategy_.trainers_endpoints_.size(),
          platform::errors::InvalidArgument(
              "The trainer_id_ of strategy_ must be less than the "
              "size of vector strategy_.trainers_endpoints_, "
              "but received strategy_.trainer_id_ = %d, "
              "the size of strategy_.trainers_endpoints_ is %d.",
              static_cast<size_t>(strategy_.trainer_id_),
              strategy_.trainers_endpoints_.size()));
S
sneaxiy 已提交
210
    }
C
chengduo 已提交
211
    VLOG(1) << "CollectiveContext:" << context->String();
212 213
  }

214 215 216 217
  void AppendAddReaderDependencyPass() {
    AppendPass("add_reader_dependency_pass");
  }

218
  // Convert graph to run on multi-devices.
C
chengduo 已提交
219
  void AppendMultiDevPass() {
C
chengduo 已提交
220
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
221 222 223
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
224 225
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
226 227 228 229 230 231 232 233 234 235
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
236 237
          PADDLE_THROW(
              platform::errors::Unimplemented("Unknown reduce strategy."));
238 239 240 241 242 243
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
244 245 246 247 248 249 250 251 252 253 254
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
255 256 257 258 259
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
260 261 262 263 264 265 266 267 268 269 270
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
271 272 273 274 275
      VLOG(1) << "mkldnn_enabled_op_types specify the operator type list to "
                 "use MKLDNN acceleration. It is null in default, means "
                 "that all the operators supported by MKLDNN will be "
                 "accelerated. And it should not be set when "
                 "FLAGS_use_mkldnn=false.";
C
chengduo 已提交
276 277
    }
#else
278 279 280 281 282
    PADDLE_ENFORCE_NE(FLAGS_use_mkldnn, true,
                      platform::errors::PreconditionNotMet(
                          "FLAGS_use_mkldnn has been set to True, but "
                          "PaddlePaddle is compiled without MKLDNN. "
                          "Please compile PaddlePaddle with MKLDNN first."));
C
chengduo 已提交
283 284 285
#endif
  }

286 287 288 289
 private:
  BuildStrategy strategy_;
};

290
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
291 292
    bool finalize_strategy) const {
  if (is_finalized_) {
293 294
    return pass_builder_;
  }
295
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
296 297
  if (finalize_strategy) {
    is_finalized_ = true;
298
  }
X
fix  
Xin Pan 已提交
299
  return pass_builder_;
300 301
}

302
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
303
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
304 305
}

306 307 308 309 310
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
311
#if defined(PADDLE_WITH_NCCL)
312
                                DeviceType use_device,
313
                                platform::NCCLCommunicator *nccl_ctxs) const {
314 315 316
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
                                DeviceType use_device,
                                platform::BKCLCommunicator *bkcl_ctxs) const {
317
#else
318
                                DeviceType use_device) const {
319
#endif
C
chengduo 已提交
320
  VLOG(1) << "apply all passes";
321 322
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
323 324

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
325
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
326 327 328
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
329 330
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
331 332
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
333
                                                    &local_scopes);
334 335
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
336

337
#if defined(PADDLE_WITH_NCCL)
338 339
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
340
      pass->Erase(kNCCLCtxs);
341
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
342 343 344 345 346 347
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      // ToDo: more check
      platform::BKCLCommunicator *bkcl_ctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, bkcl_ctx);
348
#endif
C
chengduo 已提交
349
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
350 351
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
352 353 354 355 356
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
357
#if defined(PADDLE_WITH_NCCL)
358 359
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
C
chengduo 已提交
360 361 362 363 364
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
365 366 367 368 369 370 371 372 373 374 375
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
376
#endif
377
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
378 379
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
380
    } else if (pass->Type() == "sequential_execution_pass") {
381 382
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
383
    } else if (pass->Type() == "all_reduce_deps_pass") {
384
#if defined(PADDLE_WITH_NCCL)
385 386
      platform::NCCLCommunicator *nctx =
          (use_device == p::kCUDA) ? nccl_ctxs : nullptr;
387
      pass->Erase(kNCCLCtxs);
388
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
389 390 391
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
392 393 394 395 396 397 398 399 400 401 402
#elif defined(PADDLE_WITH_XPU) && defined(PADDLE_WITH_XPU_BKCL)
      platform::BKCLCommunicator *nctx =
          (use_device == p::kXPU) ? bkcl_ctxs : nullptr;
      pass->Erase(kBKCLCtxs);
      pass->SetNotOwned<platform::BKCLCommunicator>(kBKCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      PADDLE_ENFORCE_EQ(use_hierarchical_allreduce_, false,
                        platform::errors::Unimplemented(
                            "xpu doesn't support hierarchical_allreduce"));
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
403
#endif
404 405
      VLOG(1) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
              << ", num_trainers:" << num_trainers_;
406
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
407
      if (use_device != p::kCUDA) {
408 409
        VLOG(1) << "fuse_relu_depthwise_conv_pass is only supported on "
                   "GPU, skipped.";
410 411
        continue;
      }
412
    } else if (pass->Type() == "fusion_group_pass") {
413 414
      pass->Set<bool>("use_gpu", new bool((use_device == p::kCUDA)));
      if (use_device != p::kCUDA) {
415
        VLOG(1) << "fusion_group_pass is only supported on GPU, skipped.";
416 417
        continue;
      }
Z
Zhen Wang 已提交
418
    } else if (pass->Type() == "fuse_bn_act_pass") {
419
      if (use_device != p::kCUDA) {
420 421
        VLOG(1) << "fuse_bn_act_pass is only supported on "
                   "GPU, skipped.";
Z
Zhen Wang 已提交
422 423
        continue;
      }
Z
Zhang Ting 已提交
424
    } else if (pass->Type() == "fuse_bn_add_act_pass") {
425
      if (use_device != p::kCUDA) {
426 427
        VLOG(1) << "fuse_bn_add_act_pass is only supported on "
                   "GPU, skipped.";
Z
Zhang Ting 已提交
428 429
        continue;
      }
430 431 432
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
433
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
434
      if (use_device != p::kCUDA) {
435 436 437 438
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
439
    }
C
chengduo 已提交
440
    VLOG(1) << "Start Apply Pass " << pass->Type();
441
    graph = pass->Apply(graph);
C
chengduo 已提交
442
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
443
  }
C
chengduo 已提交
444
  VLOG(1) << "All Passes Applied";
445 446
  return graph;
}
D
dzhwinter 已提交
447

448 449 450 451
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
452
USE_PASS(sync_batch_norm_pass);
453
USE_PASS(fuse_relu_depthwise_conv_pass);
454
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
455
USE_PASS(fuse_bn_act_pass);
Z
Zhang Ting 已提交
456
USE_PASS(fuse_bn_add_act_pass);
457
USE_PASS(graph_viz_pass);
458
USE_PASS(multi_batch_merge_pass);
459
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
460
USE_PASS(all_reduce_mode_multi_devices_pass);
461
USE_PASS(dist_multi_devices_pass);
462 463
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
464
USE_PASS(sequential_execution_pass);
465
USE_PASS(all_reduce_deps_pass);
466
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
467
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
468
USE_PASS(lock_free_optimize_pass);
469
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
470
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
471 472
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
473
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
474
USE_PASS(fuse_all_reduce_op_pass);
475
USE_PASS(runtime_context_cache_pass);
476
USE_PASS(add_reader_dependency_pass);
477 478 479
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
480
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
481 482
USE_PASS(fusion_group_pass);
#endif