build_strategy.cc 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29
DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
31

32 33 34 35
namespace paddle {
namespace framework {
namespace details {

36
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
37 38
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
39
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
40
  // don't need to append it here.
Y
Yancey1989 已提交
41
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
42 43
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
44 45
}

46 47 48 49
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
50
    ResolveOptionConfliction();
C
chengduo 已提交
51

C
chengduo 已提交
52 53 54 55 56
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

57 58
    AppendPassToUseNgraph("ngraph_subgraph_pass");

C
chengduo 已提交
59 60
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
61

C
chengduo 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
75

C
chengduo 已提交
76 77
    SetCollectiveContext();
  }
78

C
chengduo 已提交
79 80 81 82
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
83
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
84 85
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
S
sneaxiy 已提交
86
    }
C
chengduo 已提交
87 88 89 90 91
    if (strategy_.is_distribution_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
Q
qingqing01 已提交
92
    }
C
chengduo 已提交
93 94 95 96 97 98 99 100
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
      VLOG_IF(3, strategy_.fuse_all_reduce_ops_)
          << "fuse_all_optimizer_ops only work in Reducer mode.";
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
101
    }
102 103 104 105 106 107
    if (strategy_.async_mode_) {
      VLOG_IF(3, strategy_.fuse_all_optimizer_ops_)
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
    }
C
chengduo 已提交
108
  }
109

C
chengduo 已提交
110 111 112 113 114 115
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
116

C
chengduo 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
132

C
chengduo 已提交
133 134 135 136 137
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
138
    // for single card training, fuse_all_reduce_ops is unnecessary.
139
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
140 141
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
142
    // Fuse all the optimization operators.
C
chengduo 已提交
143 144 145
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
146
    if (strategy_.fuse_all_optimizer_ops_) {
147 148 149
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
150
    }
C
chengduo 已提交
151
  }
C
chengduo 已提交
152

C
chengduo 已提交
153 154 155 156 157 158 159 160 161
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
162
    }
C
chengduo 已提交
163
    VLOG(1) << "CollectiveContext:" << context->String();
164 165
  }

166
  // Convert graph to run on multi-devices.
C
chengduo 已提交
167
  void AppendMultiDevPass() {
C
chengduo 已提交
168
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
169 170 171
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
172 173
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
174 175 176 177 178 179 180 181 182 183 184
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
185 186 187 188 189 190
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

C
chengduo 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
                      "Please compile with NGRAPH first to use NGRAPH");
#endif
  }

242 243 244 245
 private:
  BuildStrategy strategy_;
};

246
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
247 248
    bool finalize_strategy) const {
  if (is_finalized_) {
249 250
    return pass_builder_;
  }
251
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
252 253
  if (finalize_strategy) {
    is_finalized_ = true;
254
  }
X
fix  
Xin Pan 已提交
255
  return pass_builder_;
256 257
}

258
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
259
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
260 261
}

262 263 264 265 266
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
P
peizhilin 已提交
267
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
268 269
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
270
#else
271
                                const bool use_cuda) const {
272
#endif
273
  VLOG(3) << "apply all passes";
274 275
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
276 277

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
G
gongweibao 已提交
278
    VLOG(3) << "BuildStrategy::Apply pass:" << pass->Type();
279 280 281
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
282 283
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
284 285
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
286
                                                    &local_scopes);
287 288
      pass->Erase(ir::kNRanks);
      pass->Set<size_t>(ir::kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
289

P
peizhilin 已提交
290
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
291
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
292
      pass->Erase(kNCCLCtxs);
293
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
294
#endif
C
chengduo 已提交
295
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
C
chengduo 已提交
296 297 298 299 300 301
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
302 303 304 305 306 307
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
308
#endif
309
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
C
chengduo 已提交
310 311 312 313 314
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
S
sneaxiy 已提交
315
    } else if (pass->Type() == "sequential_execution_pass") {
316 317
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
318
    } else if (pass->Type() == "all_reduce_deps_pass") {
319
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
320
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
321
      pass->Erase(kNCCLCtxs);
322
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
323 324 325 326
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
327 328
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
329 330 331 332 333 334
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
335 336 337
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
338 339 340 341 342 343
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
344
    }
345
    VLOG(3) << "Start Apply Pass " << pass->Type();
346
    graph = pass->Apply(graph);
347
    VLOG(3) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
348
  }
Q
Qiao Longfei 已提交
349
  VLOG(3) << "All Passes Applied";
350 351
  return graph;
}
D
dzhwinter 已提交
352

353 354 355 356
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
357
USE_PASS(sync_batch_norm_pass);
358
USE_PASS(fuse_relu_depthwise_conv_pass);
359 360
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
361
USE_PASS(multi_batch_merge_pass);
362
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
363
USE_PASS(all_reduce_mode_multi_devices_pass);
364
USE_PASS(dist_multi_devices_pass);
365 366
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
367
USE_PASS(sequential_execution_pass);
368
USE_PASS(all_reduce_deps_pass);
369
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
370
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
371
USE_PASS(lock_free_optimize_pass);
372
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
373
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
374 375
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
376
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
377
USE_PASS(fuse_all_reduce_op_pass);
378
USE_PASS(runtime_context_cache_pass);
379 380 381
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
382 383 384
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif