/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/operators/math/gru_compute.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/sequence2batch.h" #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; template using EigenMatrix = framework::EigenMatrix; template class GRUKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { auto* input = context.Input("Input"); auto* h0 = context.Input("H0"); const T* h0_data = h0 ? h0->data() : nullptr; auto* weight = context.Input("Weight"); const T* weight_data = weight->data(); auto* bias = context.Input("Bias"); auto* batch_gate = context.Output("BatchGate"); batch_gate->mutable_data(context.GetPlace()); auto* batch_reset_hidden_prev = context.Output("BatchResetHiddenPrev"); batch_reset_hidden_prev->mutable_data(context.GetPlace()); auto* batch_hidden = context.Output("BatchHidden"); batch_hidden->mutable_data(context.GetPlace()); auto* hidden = context.Output("Hidden"); hidden->mutable_data(context.GetPlace()); context.ShareLoD("Input", "Hidden"); auto hidden_dims = hidden->dims(); bool is_reverse = context.Attr("is_reverse"); math::LoDTensor2BatchFunctor to_batch; to_batch(context.device_context(), *input, *batch_gate, true, is_reverse); int frame_size = hidden_dims[1]; int batch_size = hidden_dims[0]; auto g = EigenMatrix::From(*batch_gate); auto place = context.GetEigenDevice(); if (bias) { auto b = EigenMatrix::From(*bias); g.device(place) = g + b.reshape(Eigen::array({{1, frame_size * 3}})) .broadcast(Eigen::array({{batch_size, 1}})); } math::hl_gru_value gru_value; gru_value.gateWeight = const_cast(weight_data); gru_value.stateWeight = const_cast(weight_data + 2 * frame_size * frame_size); gru_value.prevOutValue = const_cast(h0_data); auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); int cur_batch_size = bend - bstart; Tensor gate_t = batch_gate->Slice(bstart, bend); Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend); Tensor hidden_t = batch_hidden->Slice(bstart, bend); gru_value.outputValue = hidden_t.data(); gru_value.gateValue = gate_t.data(); gru_value.resetOutputValue = reset_hidden_prev_t.data(); math::GRUUnitFunctor::compute( context.device_context(), gru_value, frame_size, cur_batch_size, math::ActiveType(context.Attr("activation")), math::ActiveType(context.Attr("gate_activation"))); gru_value.prevOutValue = gru_value.outputValue; } math::Batch2LoDTensorFunctor to_seq; batch_hidden->set_lod(batch_gate->lod()); to_seq(context.device_context(), *batch_hidden, *hidden); } void Compute(const framework::ExecutionContext& context) const override { BatchCompute(context); } }; template class GRUGradKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { auto* h0 = context.Input("H0"); const T* h0_data = h0 ? h0->data() : nullptr; auto* weight = context.Input("Weight"); const T* weight_data = weight->data(); auto* batch_gate = context.Input("BatchGate"); auto* batch_reset_hidden_prev = context.Input("BatchResetHiddenPrev"); auto* batch_hidden = context.Input("BatchHidden"); auto* hidden = context.Input("Hidden"); auto* hidden_grad = context.Input(framework::GradVarName("Hidden")); auto* input_grad = context.Output(framework::GradVarName("Input")); auto* h0_grad = context.Output(framework::GradVarName("H0")); auto* weight_grad = context.Output(framework::GradVarName("Weight")); auto* bias_grad = context.Output(framework::GradVarName("Bias")); auto gate_dims = batch_gate->dims(); auto hidden_dims = hidden->dims(); int frame_size = hidden_dims[1]; math::LoDTensor2BatchFunctor to_batch; LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad; batch_hidden_grad.mutable_data(hidden_dims, context.GetPlace()); batch_gate_grad.mutable_data(gate_dims, context.GetPlace()); batch_reset_hidden_prev_grad.mutable_data(hidden_dims, context.GetPlace()); math::SetConstant zero; zero(context.device_context(), &batch_hidden_grad, static_cast(0.0)); zero(context.device_context(), &batch_gate_grad, static_cast(0.0)); zero(context.device_context(), &batch_reset_hidden_prev_grad, static_cast(0.0)); bool is_reverse = context.Attr("is_reverse"); batch_hidden_grad.set_lod(batch_hidden->lod()); to_batch(context.device_context(), *hidden_grad, batch_hidden_grad, false, is_reverse); math::hl_gru_value gru_value; gru_value.gateWeight = const_cast(weight_data); gru_value.stateWeight = const_cast(weight_data + 2 * frame_size * frame_size); math::hl_gru_grad gru_grad; if (weight_grad) { gru_grad.gateWeightGrad = weight_grad->mutable_data(context.GetPlace()); zero(context.device_context(), weight_grad, static_cast(0.0)); gru_grad.stateWeightGrad = weight_grad->data() + 2 * frame_size * frame_size; } else { gru_grad.gateWeightGrad = nullptr; gru_grad.stateWeightGrad = nullptr; } auto batch_starts = batch_hidden_grad.lod()[0]; size_t num_batch = batch_starts.size() - 1; for (int n = static_cast(num_batch) - 1; n >= 0; n--) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); int cur_batch_size = bend - bstart; Tensor gate_t = batch_gate->Slice(bstart, bend); gru_value.gateValue = gate_t.data(); Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend); gru_value.resetOutputValue = reset_hidden_prev_t.data(); Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend); gru_grad.outputGrad = hidden_grad_t.data(); Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend); gru_grad.gateGrad = gate_grad_t.data(); Tensor reset_hidden_prev_grad_t = batch_reset_hidden_prev_grad.Slice(bstart, bend); gru_grad.resetOutputGrad = reset_hidden_prev_grad_t.data(); if (n == 0) { gru_value.prevOutValue = const_cast(h0_data); if (h0_grad) { T* h0_grad_data = h0_grad->mutable_data(context.GetPlace()); zero(context.device_context(), h0_grad, static_cast(0.0)); gru_grad.prevOutGrad = h0_grad_data; } else { gru_grad.prevOutGrad = nullptr; } } else { int bstart_pre = static_cast(batch_starts[n - 1]); Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart); gru_value.prevOutValue = hidden_prev_t.data(); Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart); gru_grad.prevOutGrad = hidden_prev_grad_t.data(); } math::GRUUnitGradFunctor::compute( context.device_context(), gru_value, gru_grad, frame_size, cur_batch_size, math::ActiveType(context.Attr("activation")), math::ActiveType(context.Attr("gate_activation"))); } if (input_grad) { input_grad->mutable_data(context.GetPlace()); math::Batch2LoDTensorFunctor to_seq; batch_gate_grad.set_lod(batch_gate->lod()); to_seq(context.device_context(), batch_gate_grad, *input_grad); } if (bias_grad) { bias_grad->mutable_data(context.GetPlace()); auto d_b = EigenMatrix::From(*bias_grad); auto d_g = EigenMatrix::From(batch_gate_grad); auto place = context.GetEigenDevice(); d_b.device(place) = d_g.sum(Eigen::array({{0}})); } } void Compute(const framework::ExecutionContext& context) const override { BatchCompute(context); } }; } // namespace operators } // namespace paddle