sharding_optimizer.py 81.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
18
from paddle.static import default_startup_program, device_guard
19 20
from paddle.fluid import layers

21
from .common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper, OP_ROLE_KEY
22 23 24 25 26 27 28 29 30 31 32
from .common import is_backward_op, is_optimizer_op, is_update_op
from .meta_optimizer_base import MetaOptimizerBase
from .sharding.shard import Shard, ProgramSegment
from .sharding.fp16_helper import FP16Utils
from .sharding.weight_decay_helper import WeightDecayHelper
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
from .sharding import utils
# FIXME: import *
from .sharding.utils import *
33
import logging
R
Roc 已提交
34
from ..utils.log_util import logger
35

36
__all__ = []
37 38 39


class ShardingOptimizer(MetaOptimizerBase):
40 41
    """Sharding Optimizer."""

42 43 44 45 46 47
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
48 49
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
50
            "ASPOptimizer",
51 52
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
53
        ]
54 55 56
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer",
        ]
57 58 59 60 61 62 63 64 65
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
66 67 68 69
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
70 71 72 73 74 75 76 77 78 79 80 81 82 83

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
84
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
85

W
WangXi 已提交
86 87 88 89 90 91 92 93 94 95 96
    def _get_sharding_segment_strategy(self):
        """ get
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
97

W
WangXi 已提交
98 99
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
100
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
W
WangXi 已提交
101 102
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
103 104 105 106 107 108 109
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
W
WangXi 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122
                    str(segment_strategy)))
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
        """ get
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
123

124
        # parallelism
W
WangXi 已提交
125 126 127 128 129 130 131
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
132 133
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
134 135 136
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
137 138 139 140 141 142 143 144 145 146
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            assert pp_degree == 2, ("For manually set pipeline, only "
                                    "pp_degree = 2 is supported.")
            assert global_world_size == mp_degree * sharding_degree * dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                    global_world_size, mp_degree, sharding_degree, dp_degree)
        else:
            assert global_world_size == mp_degree * sharding_degree * pp_degree * dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                    global_world_size, mp_degree, sharding_degree, pp_degree, dp_degree)
147

J
JZ-LIANG 已提交
148
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
149
        if sharding_configs["hybrid_dp"]:
150
            logger.warning(
W
WangXi 已提交
151 152 153 154 155 156 157 158 159 160 161 162
                "[hybrid_dp] API setting is deprecated. Now when "
                "dp_degree >= 2, its will be in hybrid dp mode automatically")
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
        """ get
163 164
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
165 166
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
167
        self._optimizer_sharding
W
WangXi 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
181 182 183
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
184
                dp_mode = "pp_hybrid_dp"
185
            else:
W
WangXi 已提交
186 187 188 189
                assert self.sharding_degree > 1, \
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, " \
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
                dp_mode = "sharding_hybrid_dp"
190

191
        # gradient merge
W
WangXi 已提交
192 193
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
194
        if self.pp_degree <= 1:
W
WangXi 已提交
195
            gm_mode = "sharding_gm"
196 197
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
198 199
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
200 201 202 203 204 205 206 207
            gradient_scale_configs = strategy.gradient_scale_configs
            assert gradient_scale_configs['scale_strategy'] == 'avg', \
                'For pipeline mode, the ' 'gradient scale mode should ' \
                'be "avg", but got {}'.format(gradient_scale_configs['scale_strategy'])
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
208
        if gm_acc_step > 1:
209
            logger.info("Gradient merge in [{}], acc step = [{}]".format(
W
WangXi 已提交
210
                gm_mode, gm_acc_step))
211

212 213 214 215 216 217 218 219
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
        if self.sharding_degree == 1 and self.dp_degree > 1 \
                and sharding_configs['_dp_as_optimizer_sharding'] \
                and self.pp_degree > 1:
            optimizer_sharding = True

W
WangXi 已提交
220 221 222
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
223
        self._optimizer_sharding = optimizer_sharding
224 225

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
226
        self.pp_allreduce_in_optimize = sharding_configs[
227
            "pp_allreduce_in_optimize"]
228

W
WangXi 已提交
229 230 231 232
    def _inner_opt_minimize(self, loss, startup_program, parameter_list,
                            no_grad_set):
        pipeline_configs = self.user_defined_strategy.pipeline_configs

233 234 235
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
236 237 238 239

        if self.pp_degree > 1:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(
                self.inner_opt, self._gradient_merge_acc_step)
W
WangXi 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
256
                'scale_gradient': self.scale_gradient
W
WangXi 已提交
257
            }
258 259
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
260 261 262

            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
W
WangXi 已提交
263
            assert self.pp_degree == len(program_list)
264 265 266
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
267 268 269

        if startup_program is None:
            startup_program = default_startup_program()
270 271 272

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
273
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
274 275 276 277 278
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
                main_program = program_list[int(
                    os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))]
            else:
                main_program = program_list[self.pp_rank]
279 280 281 282 283 284 285 286 287 288 289
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

290 291 292 293
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

294 295 296 297 298
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
299
        return optimize_ops, params_grads
300

W
WangXi 已提交
301 302 303 304 305
    def _apply_sharding_pass(self, params_grads):
        if self.sharding_degree == 1: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
306

W
WangXi 已提交
307
        # step1: build shard
308 309
        self._build_shard(params_grads, self.sharding_rank,
                          self.sharding_degree)
310

W
WangXi 已提交
311 312
        # step2: split_program
        self._split_program(main_block)
313

W
WangXi 已提交
314 315 316 317
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
318

W
WangXi 已提交
319
        # step4: remove unneeded ops and vars from block
320 321 322 323 324 325 326 327 328 329 330
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
        """ outer dp as optimizer sharding """
        if self._optimizer_sharding is False: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
W
WangXi 已提交
346
        if self.pp_degree == 1: return
347

W
WangXi 已提交
348
        strategy = self.user_defined_strategy
349
        sharding_configs = strategy.sharding_configs
350

W
WangXi 已提交
351 352 353 354 355 356 357 358 359 360 361 362
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
363 364
                        main_block._remove_op(idx)

W
WangXi 已提交
365 366 367 368 369 370 371 372
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

373 374 375 376 377
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
378
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
379
            main_block, strategy=strategy, shard=shard)
380 381

        len_of_ops = len(main_block.ops)
382 383
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
384 385
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
386
        if self.pp_allreduce_in_optimize:
387 388 389 390 391 392
            logger.info("Pipeline Persistable grad is {}".format(
                accumulated_grad_names))
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
393 394 395 396 397 398
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
399 400 401 402 403 404 405
                use_calc_stream=True,
                rank=self.sharding_rank)

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

406 407 408 409 410 411 412 413 414 415 416
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
                strategy=strategy)
417 418
            logger.info(
                "Optimizer grad in this rank {}".format(accumulated_grad_names))
419 420 421
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

422 423
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
424 425 426 427 428 429 430 431
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
                self.dp_ring_id, [x[0].name for x in params_grads],
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
432
                strategy=None if optimize_cast else strategy)
433 434
            logger.info(
                "Optimizer param in this rank {}".format(optimizer_param))
435
            if not strategy.fuse_grad_merge and not optimize_cast:
436 437
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
438 439 440 441 442 443 444 445 446 447 448 449
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
                user_defined_strategy=strategy)
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
        if self.user_defined_strategy.amp and \
                self.user_defined_strategy.amp_configs['use_dynamic_loss_scaling']:
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
                        dtype=loss_scaling_var.dtype)
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
                            OP_ROLE_KEY: OpRole.Optimize
                        })
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
            assert tmp_first_opt_idx is not None, 'Occurs some errors, no optimize ops'
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

W
WangXi 已提交
500
    def _adapt_amp_clip_without_sharding(self):
501 502
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
503 504
        if self.sharding_degree > 1: return
        if self._optimizer_sharding: return
505

W
WangXi 已提交
506 507 508 509
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
510

511 512 513 514 515
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
516

W
WangXi 已提交
517
        gradientclip_helper = GradientClipHelper(None)
518 519 520
        gradientclip_helper.sync_global_norm(main_block,
                                             [self.mp_ring_id, self.pp_ring_id],
                                             self.mp_rank)
W
WangXi 已提交
521 522 523 524 525

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
526 527 528
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
529
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
530

531 532
        main_block._sync_with_cpp()

533
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
534 535 536 537 538
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

539
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
540
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
541 542
        offload_helper = OffloadHelper(mp_ring_id=mp_ring_id,
                                       dp_ring_id=dp_ring_id)
543

W
WangXi 已提交
544 545 546 547
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
548
            logger.info("Sharding with optimize offload !")
549
            offload_helper.offload(main_block, startup_block)
550
            # The optimize_cast is already included in offload_fp32param
551
            offload_helper.offload_fp32param(main_block, startup_block)
552 553 554 555
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
556 557 558 559 560
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
                    main_block, startup_block,
                    [x[0].name for x in params_grads])
                # NOTE(wangxi): fused after optimize_cast
561 562 563 564
                utils.fuse_opt_broadcast_param_ops(main_block,
                                                   dp_ring_id,
                                                   self._shard,
                                                   strategy=strategy)
565
            else:
566 567
                offload_helper.cast_fp32param_in_optimize(
                    main_block, startup_block)
568

W
WangXi 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
            loss, startup_program, parameter_list, no_grad_set)

        self._init_comm()

        self._apply_sharding_pass(params_grads)

604 605 606
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
607 608 609 610 611 612

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

613
        # apply optimize offload or optimize cast
614
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
615

616
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
617
        self._sharding_gradient_merge()
618 619 620 621 622 623

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
624

W
WangXi 已提交
625 626 627
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
628

629 630 631 632
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
633
        self._dump_program_for_debug()
634

635 636 637
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
638 639
        return optimize_ops, params_grads

640 641 642 643 644 645
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
646
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
647 648 649 650 651 652 653
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       pp_group_endpoints,
                                                       pp_rank,
                                                       ring_id,
                                                       False,
                                                       sync=False)
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
671 672 673 674 675 676 677
        send_to_next_pair = (self.pp_rank, (self.pp_rank + 1) % self.pp_degree
                             )  # 2->3
        recv_from_next_pair = (
            (self.pp_rank + 1) % self.pp_degree, self.pp_rank)  # 3->2
        recv_from_prev_pair = (
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree, self.pp_rank
        )  # 1->2
678 679 680 681 682 683 684 685 686 687
        send_to_prev_pair = (self.pp_rank, (self.pp_rank - 1 + self.pp_degree) %
                             self.pp_degree)  # 2->1

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
688 689
        logger.info("pair0(even->odd): pp pair:{}, ring_id: {}".format(
            pair, ring_id))
690 691 692 693 694 695

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
696 697
        logger.info("pair1(even<-odd): pp pair:{}, ring_id: {}".format(
            pair, ring_id))
698 699 700 701 702

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
703 704 705
            ring_id = self.pp_ring_map.get(pair[0] * 1000 + pair[1],
                                           max_ring_id +
                                           1)  # 3->0 not in pp_ring_map
706 707 708 709 710 711 712 713
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair2(odd->even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
714 715 716
            ring_id = self.pp_ring_map.get(pair[0] * 1000 + pair[1],
                                           max_ring_id +
                                           2)  # 0->3 not in pp_ring_map
717 718 719 720 721 722 723 724 725 726 727
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

        assert len(my_pair) == 0, "Current pipeline does not support cross stage communication, " \
                                  "please check unexpected pair {}".format(my_pair)

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
728
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
729 730 731 732 733 734 735
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.pp_group_endpoints,
                                                       self.pp_rank,
                                                       self.pp_ring_id,
                                                       False,
                                                       sync=False)
736

737 738 739 740 741 742 743 744 745 746 747 748
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

749
    def _init_comm(self):
750
        # sync var
751 752
        startup_block = self._startup_program.global_block()

753
        # mp ring
754
        if self.mp_degree > 1:
755 756 757 758 759 760 761
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.mp_group_endpoints,
                                                       self.mp_rank,
                                                       self.mp_ring_id,
                                                       False,
                                                       sync=False)
762

763
        # sharding ring
764 765 766 767 768 769 770 771 772 773
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                sync=False)

774 775
        # pp ring
        if self.pp_degree > 1:
776
            self._init_pipeline_comm(startup_block)
777 778

        # pure dp ring
779
        if self.dp_degree > 1:
780 781 782 783 784 785 786
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.dp_group_endpoints,
                                                       self.dp_rank,
                                                       self.dp_ring_id,
                                                       False,
                                                       sync=False)
787

788 789
        startup_block._sync_with_cpp()

790
    def _build_shard(self, params_grads, shard_rank, shard_size):
791 792
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
793
        self._shard.setup(params_grads, shard_rank, shard_size)
794 795 796 797 798 799

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
800 801 802
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
803 804
            self._collective_helper._wait(current_endpoint, endpoints)

805 806 807 808 809 810 811 812
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

813 814 815 816 817
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
818 819

        var2broadcast_time = dict()
820 821 822 823 824
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
825 826 827 828 829 830 831 832 833 834 835 836 837
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
838 839
                                input_name = input_name[:input_name.
                                                        find(".cast_fp16@GRAD")]
840 841

                        if input_name in self._backward_remain_anchors:
842 843
                            segment = self.collect_segment(
                                segment, op_idx, block)
844 845 846 847 848 849 850
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
851 852
                            segment = self.collect_segment(
                                segment, op_idx, block)
853
                            self._forward_remain_anchors.remove(output_name)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
871 872 873 874 875 876

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
877 878
                                                                      broadcast_var_base_name
                                                                      .find(
879 880 881 882 883 884 885
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

886
                segment._param2broadcast[input_name] = broadcast_var_name
887 888
                segment._broadcast_vars.append(
                    (broadcast_var_name, self._shard.device(input_name)))
889 890 891 892
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
893 894 895 896 897 898 899 900 901 902
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
903 904 905
                            param, reduced_grad = op_role_var[i], op_role_var[i
                                                                              +
                                                                              1]
906
                            segment._allreduce_vars.append(reduced_grad)
907 908
                            assert (reduced_grad
                                    not in self._reduced_grads_to_param)
909
                            self._reduced_grads_to_param[reduced_grad] = param
910 911 912 913 914 915 916 917 918 919 920

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
921 922 923 924 925 926 927 928 929 930

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
931 932 933
            for varname in sorted(var2broadcast_time,
                                  key=var2broadcast_time.get,
                                  reverse=True):
934
                logger.info("Sharding broadcast: [{}] times [{}]".format(
935 936
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
937
                logger.info("segment [{}] :".format(idx_))
938 939 940 941 942 943 944
                logger.info("start op: [{}]  [{}]".format(
                    block.ops[self._segments[idx_]._start_idx].desc.type(),
                    block.ops[self._segments[idx_].
                              _start_idx].desc.input_arg_names()))
                logger.info("end   op: [{}]  [{}]".format(
                    block.ops[self._segments[idx_]._end_idx].desc.type(),
                    block.ops[
945
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
946 947
        return

948
    def _prune_main_program(self, block, shard, rings):
949 950 951
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
952 953 954 955 956 957

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
958 959
        """
        weightdecay_helper = WeightDecayHelper()
960
        weightdecay_helper.prune_weight_decay(block, shard)
961 962

        # FIXME(wangxi): mp should prune duplicated param_grads
963 964 965
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
966
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
967

968
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
969
        gradientclip_helper = GradientClipHelper(None)
970
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
971 972 973 974 975 976

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
977 978 979
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
            if op.type == "c_allreduce_sum" and \
                    op.attr('use_model_parallel') is False:
980 981 982 983
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

984
        # prune optimizer state and param
985 986
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
987 988
            if shard.is_opti_var(var_name) and \
              not shard.has_opt_var(var_name):
989 990 991 992 993 994 995 996 997 998
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
999 1000 1001 1002 1003 1004 1005
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1037 1038
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1039
                if program_deps.should_remove_op(idx):
1040 1041 1042
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
                    reserved_vars = self._params if self._optimizer_sharding else None
                    program_deps.remove_op(idx, reserved_vars)
1043

1044
        # NOTE (JZ-LIANG) revise and unify logic here
1045
        # sharding support fp16_allreduce logic
1046 1047 1048 1049 1050 1051 1052 1053
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
1054 1055 1056 1057 1058
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1059 1060
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1061 1062 1063

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
1064 1065 1066
        """
        if len(self._segments) < 1:
            return
1067
        # sharding
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

1084
        if self._segments[-1]._allreduce_vars:
1085 1086
            shard_allredue_vars = self._shard.filter_grads(
                self._segments[-1]._allreduce_vars)
1087 1088 1089
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1090 1091
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
1092 1093 1094 1095 1096 1097
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1098
            # gradient merge
1099
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1100
                self.create_persistable_gradients_and_insert_merge_ops(
1101
                    block, self._startup_program.global_block(),
1102 1103 1104
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

1105
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
1106
                                 self.sharding_ring_id,
1107
                                 self._segments[-1]._allreduce_vars)
1108 1109 1110 1111 1112 1113 1114 1115
            # allreduce --> reduce
            insert_reduce_ops(block,
                              self._segments[-1]._end_idx,
                              self.sharding_ring_id,
                              self._segments[-1]._allreduce_vars,
                              self._shard,
                              op_role=OpRole.Backward,
                              use_calc_stream=False)
1116 1117 1118 1119

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
1120 1121 1122
            broadcast_vars = self._segments[
                idx +
                1]._broadcast_vars if idx < len(self._segments) - 1 else []
1123
            fill_constant_vars = self._segments[
1124 1125 1126 1127
                idx +
                2]._fill_constant_vars if idx < len(self._segments) - 2 else []
            cast_ops = self._segments[
                idx + 2]._cast_ops if idx < len(self._segments) - 2 else {}
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
1143 1144
                        dtype=self._main_program.global_block().var(
                            param_name).dtype,
1145 1146 1147 1148
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
1149 1150
            segment._end_idx += FP16Utils.remove_cast_op(
                block, self._params, segment, 0)
1151 1152

            # step2: add Sync ops
1153 1154
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1155 1156 1157
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
1175
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1176 1177 1178 1179 1180
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

1181 1182 1183 1184 1185 1186 1187 1188
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

1189
            # step3: insert `fill_constant` ops
1190 1191 1192
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

1193
            # step4: add `cast` ops
1194 1195 1196
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1197
            # gradient merge
1198
            if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1199
                self.create_persistable_gradients_and_insert_merge_ops(
1200 1201
                    block, self._startup_program.global_block(),
                    segment._start_idx, shard_allredue_vars, self._shard)
1202

1203 1204
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1205

1206
            # step6: add all_reduce ops
1207
            # dp
1208 1209 1210
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1211 1212 1213 1214 1215 1216
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1217 1218 1219
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
1220
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1221 1222 1223
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
1224
            # allreduce --> reduce
1225 1226
            # TODO temp change
            if len(allreduce_vars) > 0:
1227 1228 1229 1230 1231 1232 1233
                insert_reduce_ops(block,
                                  segment._start_idx,
                                  self.sharding_ring_id,
                                  allreduce_vars,
                                  self._shard,
                                  op_role=OpRole.Backward,
                                  use_calc_stream=False)
1234 1235 1236 1237

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1238 1239 1240
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1241
            insert_broadcast_ops(block, self._segments[0]._start_idx,
1242
                                 self.sharding_ring_id,
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1269
    def _prune_startup_program(self, block, shard):
1270 1271
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1272 1273 1274
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1275 1276 1277 1278 1279 1280
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1281 1282 1283
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1284 1285 1286
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1287

1288
    def _build_groups(self):
1289 1290
        """
        pre-assign ring ids
1291 1292 1293 1294
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1295 1296
            pp: 4
            pp-pair: >= 20
1297 1298 1299 1300 1301 1302 1303 1304
        if one parallelism is not enable: -1
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp        
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1305 1306
        self._collective_helper = CollectiveHelper(self.role_maker,
                                                   nrings=self._nrings_sharding)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
1324
            ]
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1337
        # sharding
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
1351
            # sharding + ...
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1366 1367
        # pp
        if self.pp_degree > 1:
1368 1369 1370
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
            self.pp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree) % self.pp_degree
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_first_stage_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree) + self.pp_group_id * (
                    self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1382 1383 1384
                self.pp_group_endpoints.append(
                    self.global_endpoints[pp_first_stage_idx +
                                          pp_stage_offset * i])
1385 1386 1387
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1388 1389
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1390 1391 1392 1393
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1394 1395 1396
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1397
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            assert self.pp_degree == 2, ("For manually set pipeline, only "
                                         "pp_degree = 2 is supported.")
            assert self.global_word_size == self.mp_degree * self.sharding_degree * self.dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                    self.global_word_size, self.mp_degree, self.sharding_degree, self.dp_degree)
            local_pp_degree = 1
        else:
            assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree, self.sharding_degree, self.pp_degree,
                self.dp_degree, self.global_word_size)
1410

1411 1412
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1413 1414
            self.dp_rank = self.global_rank // (
                self.sharding_degree * self.mp_degree * local_pp_degree)
1415
            dp_first_rank_idx = self.global_rank % (
L
lilong12 已提交
1416 1417 1418
                self.sharding_degree * self.mp_degree * local_pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree *
                         local_pp_degree)
1419 1420
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1421 1422
                self.dp_group_endpoints.append(
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i])
1423
            assert self.current_endpoint in self.dp_group_endpoints
1424
            logger.info("Hybrid DP mode turn on !")
1425 1426 1427
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1428
            self.dp_group_endpoints = []
1429

1430
        # global group
1431 1432
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1433
        self.global_ring_id = 3
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
        logger.info("sharding group endpoints: {}".format(
1452
            self.sharding_group_endpoints))
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
        logger.info("pure dp group endpoints: {}".format(
1466
            self.dp_group_endpoints))
1467 1468
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1469 1470

        return
1471

1472
    def _recreate_not_persist_param_as_var(self):
1473

1474 1475 1476 1477 1478 1479
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1496
                block._remove_var(name, sync=False)
1497 1498 1499 1500 1501 1502 1503 1504
                var = block.create_var(name=name,
                                       shape=shape,
                                       dtype=dtype,
                                       type=type,
                                       lod_level=lod_level,
                                       stop_gradient=stop_gradient,
                                       trainable=trainable,
                                       persistable=False)
1505 1506 1507
                if have_dist_attr:
                    var.is_distributed = is_distributed

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1533 1534 1535 1536 1537 1538 1539 1540
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
            if param in broadcast_params: continue
1541 1542 1543 1544 1545 1546 1547 1548 1549

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1550 1551 1552 1553 1554 1555 1556 1557 1558
                startup_block.append_op(type='c_broadcast',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring,
                                            'root': 0,
                                            'use_calc_stream': True,
                                            OP_ROLE_KEY: OpRole.Forward
                                        })
1559

1560 1561
        startup_block._sync_with_cpp()

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1592 1593 1594 1595
                inputs={
                    'X': grad_name,
                    'Y': gradient_merge_var
                },
1596 1597 1598 1599 1600 1601 1602 1603
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
1604 1605 1606 1607 1608 1609 1610
            startup_block.append_op(type="fill_constant",
                                    outputs={"Out": startup_gradient_merge_var},
                                    attrs={
                                        "shape": grad_var.shape,
                                        "dtype": grad_var.dtype,
                                        "value": float(0),
                                    })
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

1625 1626 1627 1628 1629 1630
        zero_var = layers.create_global_var(name="gradient_merge_zero",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

1641 1642 1643
        cond_var = main_block.create_var(name="gradient_merge_cond",
                                         shape=[1],
                                         dtype='bool')
1644 1645 1646

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            main_block.append_op(type='increment',
                                 inputs={'X': [current_step_var]},
                                 outputs={'Out': [current_step_var]},
                                 attrs={
                                     'step': float(1),
                                     OP_ROLE_KEY: OpRole.Optimize
                                 })

            main_block.append_op(type='elementwise_mod',
                                 inputs={
                                     'X': current_step_var,
                                     'Y': acc_step_var
                                 },
                                 outputs={'Out': current_step_var},
                                 attrs={
                                     'axis': -1,
                                     OP_ROLE_KEY: OpRole.Optimize,
                                     'use_mkldnn': False
                                 })
1666 1667

            # cond_var = (step_var == 0)
1668 1669 1670 1671 1672 1673 1674
            main_block.append_op(type='equal',
                                 inputs={
                                     'X': current_step_var,
                                     'Y': zero_var
                                 },
                                 outputs={'Out': cond_var},
                                 attrs={OP_ROLE_KEY: OpRole.Optimize})
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
            amp 
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

1699
        # allreduce grad@gradientmerge
1700 1701 1702 1703
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
1704 1705 1706 1707 1708 1709 1710 1711
                cur_block.append_op(type='c_allreduce_sum',
                                    inputs={'X': merged_grad_var},
                                    outputs={'Out': merged_grad_var},
                                    attrs={
                                        'ring_id': self.dp_ring_id,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Optimize
                                    })
1712 1713 1714 1715 1716

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
            cur_block.append_op(type='scale',
                                inputs={'X': merged_grad_var},
                                outputs={'Out': merged_grad_var},
                                attrs={
                                    'scale':
                                    1.0 / float(self._gradient_merge_acc_step),
                                    'bias':
                                    0.0,
                                    'bias_after_scale':
                                    False,
                                    OP_ROLE_KEY:
                                    OpRole.Optimize
                                })
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
1758 1759 1760 1761
                        self.cond_block.create_var(name=name_,
                                                   shape=shape_,
                                                   dtype=type_,
                                                   persistable=False)
1762 1763 1764 1765 1766 1767 1768 1769
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
1770 1771 1772 1773 1774 1775 1776 1777
            cur_block.append_op(type='fill_constant',
                                outputs={'Out': merged_grad_var},
                                attrs={
                                    "shape": merged_grad_var.shape,
                                    "dtype": merged_grad_var.dtype,
                                    "value": float(0),
                                    OP_ROLE_KEY: OpRole.Optimize
                                })
1778 1779 1780 1781

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
1782
    def _sharding_gradient_merge(self):
1783 1784 1785 1786 1787 1788
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
W
WangXi 已提交
1789 1790 1791 1792
        if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
            return

        main_block = self._main_program.global_block()
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
1832 1833 1834 1835
            outputs={
                'Out': [],
                'Scope': [step_scope]
            },
1836 1837 1838 1839
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })