elementwise_op.h 22.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
24
#include "paddle/fluid/framework/op_version_registry.h"
25
#include "paddle/fluid/operators/common_infer_shape_functions.h"
26
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
27

28 29 30
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
31 32 33 34 35 36 37 38 39

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
40 41

  void InferShape(framework::InferShapeContext *ctx) const override {
42 43 44 45 46 47 48 49 50 51 52
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
53 54

    if (ctx->GetInputsVarType("X").front() ==
55
        framework::proto::VarType::SELECTED_ROWS) {
56 57
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
58 59 60 61 62
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
63 64
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
65 66 67 68 69
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
70 71
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
72 73 74 75
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
76
    }
77

78 79 80 81 82 83 84 85
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
86 87 88 89 90 91 92 93
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
94 95 96 97 98 99 100
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
101 102 103
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
J
Jacek Czaja 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef PADDLE_WITH_MKLDNN
      // (jczaja): Broadcasting of dims has to be done on Paddle shapes (NHWC)
      // if model is using NHWC.
      bool should_rotate =
          ctx->IsRunMKLDNNKernel() &&
          (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
           framework::DataLayout::kNHWC);
      if (should_rotate) {
        // Pick bigger shape and rotate this one
        bool x_over_y = (x_dims.size() > y_dims.size());
        auto vdims = x_over_y ? framework::vectorize<int>(x_dims)
                              : framework::vectorize<int>(y_dims);
        std::rotate(vdims.begin() + 1, vdims.begin() + 2, vdims.end());
        if (x_over_y) {
          x_dims = framework::make_ddim(vdims);
        } else {
          y_dims = framework::make_ddim(vdims);
        }
      }
#endif

125 126 127
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
J
Jacek Czaja 已提交
128 129 130 131 132 133 134
#ifdef PADDLE_WITH_MKLDNN
      // Now rotate shape back if needed (NHWC -> NCHW)
      if (should_rotate) {
        std::rotate(out_dims_array.begin() + 1, out_dims_array.end() - 1,
                    out_dims_array.end());
      }
#endif
135 136 137 138
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
139
  }
140 141

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
142
      const framework::ExecutionContext &ctx) const override {
143 144
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
145 146

#ifdef PADDLE_WITH_MKLDNN
147
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
148 149 150 151 152 153 154
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
155 156 157

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
158
      const framework::OpKernelType &expected_kernel_type) const override {
159 160
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
161 162 163
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
164
    } else {
J
Jacek Czaja 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
#ifdef PADDLE_WITH_MKLDNN
      // When elementwise is first oneDNN op (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
180 181 182 183
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
184 185
};

C
chengduo 已提交
186 187 188
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
189
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
190
      const override {
191 192
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
193 194 195
  }
};

G
gongweibao 已提交
196 197
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
198
  void Make() final {
199 200 201 202
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
203
    AddAttr<int>("axis",
204 205 206 207
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
208
        .SetDefault(-1);
209
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
210 211
        .SetDefault(false)
        .AsExtra();
212
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
213 214
        .SetDefault("")
        .AsExtra();
215
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
216 217
        .SetDefault("")
        .AsExtra();
218 219 220 221
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
222 223
        .SetDefault(false)
        .AsExtra();
224 225 226 227
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
228 229
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
230
    /* int8 parameters */
231 232
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
233 234
        .SetDefault(1.0f)
        .AsExtra();
235 236
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
237 238
        .SetDefault(1.0f)
        .AsExtra();
239 240
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
241 242
        .SetDefault(1.0f)
        .AsExtra();
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
271 272 273

The equation is:

Y
Yu Yang 已提交
274
$$%s$$
K
kexinzhao 已提交
275

276
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
277
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
278 279

There are two cases for this operator:
280

L
Luo Tao 已提交
281 282
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
283 284

For case 2:
285

286 287
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
288
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
289
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
290
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
291

L
Luo Tao 已提交
292
For example:
293

G
gongweibao 已提交
294
  .. code-block:: text
G
gongweibao 已提交
295

296 297
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
298
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
299 300
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
301
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
302

Y
Yu Yang 已提交
303
)DOC",
304
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
305 306 307 308 309 310 311 312
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
313
  void InferShape(framework::InferShapeContext *ctx) const override {
314
    auto out_grad_name = framework::GradVarName("Out");
315 316 317
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
318 319 320
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
321 322
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
323
    }
Q
Qiao Longfei 已提交
324
    if (ctx->HasOutput(y_grad_name)) {
325 326
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
327 328
    }
  }
329 330

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
331
      const framework::ExecutionContext &ctx) const override {
332 333
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
334 335

#ifdef PADDLE_WITH_MKLDNN
336
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
337 338 339 340 341 342 343
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
344 345 346 347 348 349

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
350 351 352
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
C
chentianyu03 已提交
353 354 355 356 357
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
358
};
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
384
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
385 386

#ifdef PADDLE_WITH_MKLDNN
387
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
388 389 390 391 392 393 394
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
395 396 397 398 399 400

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
401 402 403
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
C
chentianyu03 已提交
404 405 406 407 408
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
426 427
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
428 429
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
430
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
431
    } else if (ctx.HasInput("DDY") == false) {
432 433
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
434
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
435
    } else {
436 437
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
438
    }
439 440

#ifdef PADDLE_WITH_MKLDNN
441
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
442 443 444 445 446 447 448
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
449 450 451 452 453 454

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
455 456 457
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
458 459 460 461 462
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
463 464
};

465 466 467 468 469 470 471 472 473 474 475 476 477 478
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
479 480 481 482 483 484 485 486 487 488 489 490
    if (ctx->HasOutput("D_X")) {
      ctx->ShareDim("X", "D_X");
      ctx->ShareLoD("X", "D_X");
    }
    if (ctx->HasOutput("D_Y")) {
      ctx->ShareDim("Y", "D_Y");
      ctx->ShareLoD("Y", "D_Y");
    }
    if (ctx->HasOutput("D_DOut")) {
      ctx->ShareDim("DOut", "D_DOut");
      ctx->ShareLoD("DOut", "D_DOut");
    }
491 492 493 494 495
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
496
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
513 514 515
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
516 517 518 519 520 521 522
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

523 524 525
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
526 527
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
528
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
529 530 531
    auto &dout =
        *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    pten::funcs::ElementwiseGradPreProcess(dout, dx);
532 533 534
  }
};

535 536
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
537 538
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
539 540
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
541

542 543 544
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

545 546 547
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
548 549
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
550

G
gongweibao 已提交
551 552
}  // namespace operators
}  // namespace paddle
H
hong 已提交
553 554 555 556 557 558 559 560
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
561
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
562
      op->SetType(#kernel_type "_grad");                                \
563
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
564 565 566 567 568 569 570 571 572
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
573 574
  }

575 576 577 578
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
579 580
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
581
                    ::paddle::operators::ElementwiseOpInplaceInferer);