custom_kernel.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

#include "paddle/fluid/framework/custom_kernel.h"
#include <dirent.h>
#include <algorithm>
#include <regex>
#include "paddle/fluid/framework/op_kernel_info_helper.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/pten/api/ext/op_kernel_info.h"
28
#include "paddle/pten/core/compat/convert_utils.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/pten/core/kernel_context.h"
#include "paddle/pten/core/kernel_registry.h"

namespace paddle {

namespace framework {

// set pten::Kernel args_def_ from op_kernel_info
// because we can not set directly to pten::Kernel without exposing
// pten::KernelArgsDef when parsing custom user function
static void ParseArgs(const OpKernelInfo& op_kernel_info,
                      pten::KernelArgsDef* args_def) {
  auto& input_defs = OpKernelInfoHelper::GetInputDefs(op_kernel_info);
  auto& output_defs = OpKernelInfoHelper::GetOutputDefs(op_kernel_info);
  auto& attribute_defs = OpKernelInfoHelper::GetAttributeDefs(op_kernel_info);

  for (auto& input : input_defs) {
H
hong 已提交
46 47 48 49 50
    auto type_index =
        input.is_vector
            ? std::type_index(typeid(const std::vector<pten::DenseTensor>&))
            : std::type_index(typeid(const pten::DenseTensor&));
    args_def->AppendInput(input.backend, input.layout, input.dtype, type_index);
51 52
  }
  for (auto& output : output_defs) {
H
hong 已提交
53 54 55 56 57 58
    auto type_index =
        output.is_vector
            ? std::type_index(typeid(const std::vector<pten::DenseTensor>&))
            : std::type_index(typeid(const pten::DenseTensor&));
    args_def->AppendOutput(output.backend, output.layout, output.dtype,
                           type_index);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  }
  for (auto& attr : attribute_defs) {
    args_def->AppendAttribute(attr.type_index);
  }
}

// custom pten kernel call function define
static void RunKernelFunc(pten::KernelContext* ctx,
                          const OpKernelInfo& op_kernel_info) {
  VLOG(3) << "[CUSTOM KERNEL] RunKernelFunc begin...";

  // input and output size is not params' num
  // but actual Tensors' size
  size_t input_size = ctx->InputsSize();
  size_t output_size = ctx->OutputsSize();
  size_t attr_size = ctx->AttrsSize();

  // parameters' num of unified user kernel function
  auto& input_defs = OpKernelInfoHelper::GetInputDefs(op_kernel_info);
  auto& output_defs = OpKernelInfoHelper::GetOutputDefs(op_kernel_info);
  auto& attribute_defs = OpKernelInfoHelper::GetAttributeDefs(op_kernel_info);

  PADDLE_ENFORCE_GE(input_size, input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of ctx inputs size (%d) must be larger than "
                        "the size of kernel input_defs (%d).",
                        input_size, input_defs.size()));

  PADDLE_ENFORCE_GE(output_size, output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of ctx outputs size (%d) must be larger than "
                        "the size of kernel output_defs (%d).",
                        output_size, output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_size, attribute_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of ctx attribute size (%d) must be equal to "
                        "to the size of kernel attribute_defs (%d).",
                        attr_size, attribute_defs.size()));

  VLOG(3) << "[CUSTOM KERNEL] Input num: " << input_defs.size()
          << "[tensor size:" << input_size << "]"
          << " Attribute num: " << attribute_defs.size()
          << " Output num: " << output_defs.size()
          << "[tensor size:" << output_size << "].";

  // Inputs mapping
  std::vector<paddle::experimental::Tensor> custom_ins;
  std::vector<std::vector<paddle::experimental::Tensor>> custom_vec_ins;
  for (size_t in_idx = 0; in_idx < input_defs.size(); ++in_idx) {
    VLOG(3) << "Mapping Input[" << in_idx << "]";
    const std::pair<int, int> range = ctx->InputRangeAt(in_idx);

    // is_vector tells if this Input is Tensor or std::vector<Tensor>
    if (!input_defs.at(in_idx).is_vector) {
      paddle::experimental::Tensor custom_t;
      auto& ctx_tensor = ctx->InputAt<pten::DenseTensor>(range.first);
      custom_t.set_impl(std::make_shared<pten::DenseTensor>(ctx_tensor));
      custom_ins.emplace_back(custom_t);
    } else {
      std::vector<paddle::experimental::Tensor> custom_vec_in;
      auto ctx_tensor_vec =
          ctx->MoveInputsBetween<pten::DenseTensor>(range.first, range.second);
      for (auto& ctx_tensor : ctx_tensor_vec) {
        paddle::experimental::Tensor custom_t;
        custom_t.set_impl(std::make_shared<pten::DenseTensor>(ctx_tensor));
        custom_vec_in.emplace_back(custom_t);
      }
      custom_vec_ins.emplace_back(custom_vec_in);
    }
    VLOG(3) << "Mapped Input[" << in_idx << "] with range[" << range.first
            << "," << range.second << ").";
  }

  // Attributes mapping
  std::vector<paddle::any> custom_attrs;
  for (size_t attr_idx = 0; attr_idx < attribute_defs.size(); ++attr_idx) {
    VLOG(3) << "Mapping Attribute[" << attr_idx << "]";
    if (attribute_defs[attr_idx].type_index == std::type_index(typeid(bool))) {
      bool arg = ctx->AttrAt<bool>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(int))) {
      int arg = ctx->AttrAt<int>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(float))) {
      float arg = ctx->AttrAt<float>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(double))) {
      double arg = ctx->AttrAt<double>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(int64_t))) {
      int64_t arg = ctx->AttrAt<int64_t>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(pten::dtype::float16))) {
      pten::dtype::float16 arg = ctx->AttrAt<pten::dtype::float16>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(DataType))) {
      DataType arg = ctx->AttrAt<DataType>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(const Scalar&))) {
      const Scalar& arg = ctx->AttrAt<const Scalar&>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(const std::vector<int64_t>&))) {
      const std::vector<int64_t>& arg =
          ctx->AttrAt<const std::vector<int64_t>&>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(const ScalarArray&))) {
      const ScalarArray& arg = ctx->AttrAt<const ScalarArray&>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else if (attribute_defs[attr_idx].type_index ==
               std::type_index(typeid(const std::vector<int>&))) {
      const std::vector<int>& arg =
          ctx->AttrAt<const std::vector<int>&>(attr_idx);
      custom_attrs.emplace_back(arg);
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported attribute attribute_defs[%d].type_index", attr_idx));
    }
    VLOG(3) << "Mapped Attribute[" << attr_idx << "]";
  }

  // Outputs mapping
  std::vector<paddle::experimental::Tensor*> custom_outs;
  std::vector<std::vector<paddle::experimental::Tensor*>> custom_vec_outs;
  std::vector<std::shared_ptr<pten::DenseTensor>> custom_outs_ptr;
  std::vector<std::vector<std::shared_ptr<pten::DenseTensor>>>
      custom_vec_outs_ptr;

  for (size_t out_idx = 0; out_idx < output_defs.size(); ++out_idx) {
    VLOG(3) << "Mapping Output[" << out_idx << "]";
    const std::pair<int, int> range = ctx->OutputRangeAt(out_idx);

    // is_vector tells if this Output is Tensor or std::vector<Tensor>
    if (!output_defs.at(out_idx).is_vector) {
      auto* ctx_tensor = ctx->MutableOutputAt<pten::DenseTensor>(range.first);
      auto* custom_t = new paddle::experimental::Tensor();
      auto custom_t_ptr = std::make_shared<pten::DenseTensor>(*ctx_tensor);
      custom_t->set_impl(custom_t_ptr);
      custom_outs.emplace_back(custom_t);
      custom_outs_ptr.emplace_back(custom_t_ptr);
    } else {
      std::vector<paddle::experimental::Tensor*> custom_vec_out;
      std::vector<std::shared_ptr<pten::DenseTensor>> custom_vec_out_ptr;
      auto ctx_tensor_vec = ctx->MutableOutputBetween<pten::DenseTensor>(
          range.first, range.second);
      for (auto ctx_tensor : ctx_tensor_vec) {
        auto* custom_t = new paddle::experimental::Tensor();
        auto custom_t_ptr = std::make_shared<pten::DenseTensor>(*ctx_tensor);
        custom_t->set_impl(custom_t_ptr);
        custom_vec_out.emplace_back(custom_t);
        custom_vec_out_ptr.emplace_back(custom_t_ptr);
      }
      custom_vec_outs.emplace_back(custom_vec_out);
      custom_vec_outs_ptr.emplace_back(custom_vec_out_ptr);
    }
    VLOG(3) << "Mapped Output[" << out_idx << "] with range[" << range.first
            << "," << range.second << ").";
  }

  // DeviceContext
  // In pten, the first paramter XXContext is decided when registering
  // through template param, but custom kernel function use unified
  // DeviceContext as first parameter of user_kernel_fn, we use backend
  // from OpKernelInfo to decide XXContext. In temporary simple
  // DeviceContext, we just set necessary info to dev_ctx(such as stream
  // in NPUContext), more related work should be done when
  // pten::DeviceContext is exposed to outer.
  DeviceContext dev_ctx;
  auto& backend = OpKernelInfoHelper::GetBackend(op_kernel_info);
  if (backend == pten::Backend::CPU) {
    // do nothing
  } else {
240 241 242 243 244 245 246 247 248 249 250
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    size_t device_type_id_ = static_cast<size_t>(backend) -
                             static_cast<size_t>(pten::Backend::ALL_BACKEND);
    std::string device_type = pten::GetGlobalDeviceType(device_type_id_);
    if (!device_type.empty()) {
      auto custom_ctx =
          ctx->GetDeviceContext<paddle::platform::CustomDeviceContext>();
      dev_ctx.set_stream(custom_ctx.stream());
      return;
    }
#endif
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    LOG(ERROR) << "[CUSTOM KERNEL] Unsupported kernel backend: " << backend
               << " with compiled Paddle.";
    return;
  }

  auto& user_kernel_fn = OpKernelInfoHelper::GetKernelFn(op_kernel_info);
  // call user function
  user_kernel_fn(dev_ctx, custom_ins, custom_vec_ins, custom_attrs,
                 &custom_outs, &custom_vec_outs);

  VLOG(3) << "[CUSTOM KERNEL] finished call user kernel function.";

  // NOTE: Map back the output tensors with stored shared_ptrs.
  for (int out_idx = output_defs.size() - 1; out_idx >= 0; --out_idx) {
    VLOG(3) << "Mapping Back Output[" << out_idx << "]";
    const std::pair<int, int> range = ctx->OutputRangeAt(out_idx);

    // is_vector tells if this Output is Tensor or std::vector<Tensor>
    if (!output_defs.at(out_idx).is_vector) {
      auto* ctx_tensor = ctx->MutableOutputAt<pten::DenseTensor>(range.first);
      *ctx_tensor = *(custom_outs_ptr.back().get());
      custom_outs_ptr.pop_back();
    } else {
      auto ctx_tensor_vec = ctx->MutableOutputBetween<pten::DenseTensor>(
          range.first, range.second);
      auto custom_vec_ptr_out = custom_vec_outs_ptr.back();
      for (int idx = ctx_tensor_vec.size() - 1; idx >= 0; --idx) {
        *(ctx_tensor_vec[idx]) = *(custom_vec_ptr_out.back().get());
        custom_vec_ptr_out.pop_back();
      }
      custom_vec_outs_ptr.pop_back();
    }
    VLOG(3) << "Mapped Output[" << out_idx << "] with range[" << range.first
            << "," << range.second << "].";
  }

  // delete newed paddle::Tensor for outputs while calling user kernel function
  for (size_t i = 0; i < custom_outs.size(); ++i) {
    delete custom_outs[i];
  }
  for (size_t i = 0; i < custom_vec_outs.size(); ++i) {
    for (size_t j = 0; j < custom_vec_outs[i].size(); ++j) {
      delete custom_vec_outs[i][j];
    }
  }
}

void RegisterKernelWithMetaInfo(
    const std::vector<OpKernelInfo>& op_kernel_infos) {
  for (size_t i = 0; i < op_kernel_infos.size(); ++i) {
    auto& kernel_info = op_kernel_infos[i];
    auto op_type = OpKernelInfoHelper::GetOpName(kernel_info);
    auto kernel_key = OpKernelInfoHelper::GetKernelKey(kernel_info);

    VLOG(3) << "[CUSTOM KERNEL] registering [" << op_type << "]" << kernel_key;

    // 1.Check whether this kernel is valid for a specific operator
    PADDLE_ENFORCE_EQ(
        pten::KernelFactory::Instance().HasCompatiblePtenKernel(op_type), true,
        platform::errors::InvalidArgument(
            "[CUSTOM KERNEL] %s is not ready for custom kernel registering.",
            op_type));

    // 2.Check whether kernel_key has been already registed
    PADDLE_ENFORCE_EQ(
        pten::KernelFactory::Instance().kernels()[op_type].find(kernel_key),
        pten::KernelFactory::Instance().kernels()[op_type].end(),
        platform::errors::InvalidArgument(
            "[CUSTOM KERNEL] The operator <%s>'s kernel: %s has been "
            "already existed in Paddle, please contribute PR if need "
            "to optimize the kernel code. Custom kernel do NOT support "
            "to replace existing kernel in Paddle.",
            op_type, kernel_key));

    // pten::KernelFn
    pten::KernelFn kernel_fn = [kernel_info](pten::KernelContext* ctx) {
      VLOG(3) << "[CUSTOM KERNEL] run custom PTEN kernel func in lambda.";
      RunKernelFunc(ctx, kernel_info);
    };
    // variadic_kernel_fn
    void* variadic_kernel_fn =
        OpKernelInfoHelper::GetVariadicKernelFn(kernel_info);
    pten::Kernel kernel(kernel_fn, variadic_kernel_fn);
    // args info
    ParseArgs(kernel_info, kernel.mutable_args_def());
    // register custom kernel to pten::KernelFactory
    pten::KernelFactory::Instance().kernels()[op_type][kernel_key] = kernel;
    VLOG(3) << "[CUSTOM KERNEL] Successed in registering operator <" << op_type
            << ">'s kernel " << kernel_key << " to Paddle. "
            << "It will be used like native ones.";
  }
}

void RegisterKernelWithMetaInfoMap(
    const paddle::OpKernelInfoMap& op_kernel_info_map) {
  auto& kernel_info_map = op_kernel_info_map.GetMap();
  VLOG(3) << "[CUSTOM KERNEL] size of op_kernel_info_map: "
          << kernel_info_map.size();

  // pair: {op_type, OpKernelInfo}
  for (auto& pair : kernel_info_map) {
    VLOG(3) << "[CUSTOM KERNEL] pair first -> op name: " << pair.first;
    RegisterKernelWithMetaInfo(pair.second);
  }
}

357
void LoadCustomKernelLib(const std::string& dso_lib_path, void* dso_handle) {
358 359 360 361 362 363
#ifdef _LINUX
  typedef OpKernelInfoMap& get_op_kernel_info_map_t();
  auto* func = reinterpret_cast<get_op_kernel_info_map_t*>(
      dlsym(dso_handle, "PD_GetOpKernelInfoMap"));

  if (func == nullptr) {
364 365
    LOG(WARNING) << "Skipped lib [" << dso_lib_path << "]: fail to find "
                 << "PD_GetOpKernelInfoMap symbol in this lib.";
366 367 368 369 370 371 372 373 374 375 376 377 378
    return;
  }
  auto& op_kernel_info_map = func();
  RegisterKernelWithMetaInfoMap(op_kernel_info_map);
  LOG(INFO) << "Successed in loading custom kernels in lib: " << dso_lib_path;
#else
  VLOG(3) << "Unsupported: Custom kernel is only implemented on Linux.";
#endif
  return;
}

}  // namespace framework
}  // namespace paddle