/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #if defined _WIN32 || defined __APPLE__ #else #define _LINUX #endif #include "paddle/fluid/framework/custom_kernel.h" #include #include #include #include "paddle/fluid/framework/op_kernel_info_helper.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/pten/api/ext/op_kernel_info.h" #include "paddle/pten/core/compat/convert_utils.h" #include "paddle/pten/core/kernel_context.h" #include "paddle/pten/core/kernel_registry.h" namespace paddle { namespace framework { // set pten::Kernel args_def_ from op_kernel_info // because we can not set directly to pten::Kernel without exposing // pten::KernelArgsDef when parsing custom user function static void ParseArgs(const OpKernelInfo& op_kernel_info, pten::KernelArgsDef* args_def) { auto& input_defs = OpKernelInfoHelper::GetInputDefs(op_kernel_info); auto& output_defs = OpKernelInfoHelper::GetOutputDefs(op_kernel_info); auto& attribute_defs = OpKernelInfoHelper::GetAttributeDefs(op_kernel_info); for (auto& input : input_defs) { auto type_index = input.is_vector ? std::type_index(typeid(const std::vector&)) : std::type_index(typeid(const pten::DenseTensor&)); args_def->AppendInput(input.backend, input.layout, input.dtype, type_index); } for (auto& output : output_defs) { auto type_index = output.is_vector ? std::type_index(typeid(const std::vector&)) : std::type_index(typeid(const pten::DenseTensor&)); args_def->AppendOutput(output.backend, output.layout, output.dtype, type_index); } for (auto& attr : attribute_defs) { args_def->AppendAttribute(attr.type_index); } } // custom pten kernel call function define static void RunKernelFunc(pten::KernelContext* ctx, const OpKernelInfo& op_kernel_info) { VLOG(3) << "[CUSTOM KERNEL] RunKernelFunc begin..."; // input and output size is not params' num // but actual Tensors' size size_t input_size = ctx->InputsSize(); size_t output_size = ctx->OutputsSize(); size_t attr_size = ctx->AttrsSize(); // parameters' num of unified user kernel function auto& input_defs = OpKernelInfoHelper::GetInputDefs(op_kernel_info); auto& output_defs = OpKernelInfoHelper::GetOutputDefs(op_kernel_info); auto& attribute_defs = OpKernelInfoHelper::GetAttributeDefs(op_kernel_info); PADDLE_ENFORCE_GE(input_size, input_defs.size(), platform::errors::InvalidArgument( "the size of ctx inputs size (%d) must be larger than " "the size of kernel input_defs (%d).", input_size, input_defs.size())); PADDLE_ENFORCE_GE(output_size, output_defs.size(), platform::errors::InvalidArgument( "the size of ctx outputs size (%d) must be larger than " "the size of kernel output_defs (%d).", output_size, output_defs.size())); PADDLE_ENFORCE_EQ(attr_size, attribute_defs.size(), platform::errors::InvalidArgument( "the size of ctx attribute size (%d) must be equal to " "to the size of kernel attribute_defs (%d).", attr_size, attribute_defs.size())); VLOG(3) << "[CUSTOM KERNEL] Input num: " << input_defs.size() << "[tensor size:" << input_size << "]" << " Attribute num: " << attribute_defs.size() << " Output num: " << output_defs.size() << "[tensor size:" << output_size << "]."; // Inputs mapping std::vector custom_ins; std::vector> custom_vec_ins; for (size_t in_idx = 0; in_idx < input_defs.size(); ++in_idx) { VLOG(3) << "Mapping Input[" << in_idx << "]"; const std::pair range = ctx->InputRangeAt(in_idx); // is_vector tells if this Input is Tensor or std::vector if (!input_defs.at(in_idx).is_vector) { paddle::experimental::Tensor custom_t; auto& ctx_tensor = ctx->InputAt(range.first); custom_t.set_impl(std::make_shared(ctx_tensor)); custom_ins.emplace_back(custom_t); } else { std::vector custom_vec_in; auto ctx_tensor_vec = ctx->MoveInputsBetween(range.first, range.second); for (auto& ctx_tensor : ctx_tensor_vec) { paddle::experimental::Tensor custom_t; custom_t.set_impl(std::make_shared(ctx_tensor)); custom_vec_in.emplace_back(custom_t); } custom_vec_ins.emplace_back(custom_vec_in); } VLOG(3) << "Mapped Input[" << in_idx << "] with range[" << range.first << "," << range.second << ")."; } // Attributes mapping std::vector custom_attrs; for (size_t attr_idx = 0; attr_idx < attribute_defs.size(); ++attr_idx) { VLOG(3) << "Mapping Attribute[" << attr_idx << "]"; if (attribute_defs[attr_idx].type_index == std::type_index(typeid(bool))) { bool arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(int))) { int arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(float))) { float arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(double))) { double arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(int64_t))) { int64_t arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(pten::dtype::float16))) { pten::dtype::float16 arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(DataType))) { DataType arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(const Scalar&))) { const Scalar& arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(const std::vector&))) { const std::vector& arg = ctx->AttrAt&>(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(const ScalarArray&))) { const ScalarArray& arg = ctx->AttrAt(attr_idx); custom_attrs.emplace_back(arg); } else if (attribute_defs[attr_idx].type_index == std::type_index(typeid(const std::vector&))) { const std::vector& arg = ctx->AttrAt&>(attr_idx); custom_attrs.emplace_back(arg); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported attribute attribute_defs[%d].type_index", attr_idx)); } VLOG(3) << "Mapped Attribute[" << attr_idx << "]"; } // Outputs mapping std::vector custom_outs; std::vector> custom_vec_outs; std::vector> custom_outs_ptr; std::vector>> custom_vec_outs_ptr; for (size_t out_idx = 0; out_idx < output_defs.size(); ++out_idx) { VLOG(3) << "Mapping Output[" << out_idx << "]"; const std::pair range = ctx->OutputRangeAt(out_idx); // is_vector tells if this Output is Tensor or std::vector if (!output_defs.at(out_idx).is_vector) { auto* ctx_tensor = ctx->MutableOutputAt(range.first); auto* custom_t = new paddle::experimental::Tensor(); auto custom_t_ptr = std::make_shared(*ctx_tensor); custom_t->set_impl(custom_t_ptr); custom_outs.emplace_back(custom_t); custom_outs_ptr.emplace_back(custom_t_ptr); } else { std::vector custom_vec_out; std::vector> custom_vec_out_ptr; auto ctx_tensor_vec = ctx->MutableOutputBetween( range.first, range.second); for (auto ctx_tensor : ctx_tensor_vec) { auto* custom_t = new paddle::experimental::Tensor(); auto custom_t_ptr = std::make_shared(*ctx_tensor); custom_t->set_impl(custom_t_ptr); custom_vec_out.emplace_back(custom_t); custom_vec_out_ptr.emplace_back(custom_t_ptr); } custom_vec_outs.emplace_back(custom_vec_out); custom_vec_outs_ptr.emplace_back(custom_vec_out_ptr); } VLOG(3) << "Mapped Output[" << out_idx << "] with range[" << range.first << "," << range.second << ")."; } // DeviceContext // In pten, the first paramter XXContext is decided when registering // through template param, but custom kernel function use unified // DeviceContext as first parameter of user_kernel_fn, we use backend // from OpKernelInfo to decide XXContext. In temporary simple // DeviceContext, we just set necessary info to dev_ctx(such as stream // in NPUContext), more related work should be done when // pten::DeviceContext is exposed to outer. DeviceContext dev_ctx; auto& backend = OpKernelInfoHelper::GetBackend(op_kernel_info); if (backend == pten::Backend::CPU) { // do nothing } else { #ifdef PADDLE_WITH_CUSTOM_DEVICE size_t device_type_id_ = static_cast(backend) - static_cast(pten::Backend::ALL_BACKEND); std::string device_type = pten::GetGlobalDeviceType(device_type_id_); if (!device_type.empty()) { auto custom_ctx = ctx->GetDeviceContext(); dev_ctx.set_stream(custom_ctx.stream()); return; } #endif LOG(ERROR) << "[CUSTOM KERNEL] Unsupported kernel backend: " << backend << " with compiled Paddle."; return; } auto& user_kernel_fn = OpKernelInfoHelper::GetKernelFn(op_kernel_info); // call user function user_kernel_fn(dev_ctx, custom_ins, custom_vec_ins, custom_attrs, &custom_outs, &custom_vec_outs); VLOG(3) << "[CUSTOM KERNEL] finished call user kernel function."; // NOTE: Map back the output tensors with stored shared_ptrs. for (int out_idx = output_defs.size() - 1; out_idx >= 0; --out_idx) { VLOG(3) << "Mapping Back Output[" << out_idx << "]"; const std::pair range = ctx->OutputRangeAt(out_idx); // is_vector tells if this Output is Tensor or std::vector if (!output_defs.at(out_idx).is_vector) { auto* ctx_tensor = ctx->MutableOutputAt(range.first); *ctx_tensor = *(custom_outs_ptr.back().get()); custom_outs_ptr.pop_back(); } else { auto ctx_tensor_vec = ctx->MutableOutputBetween( range.first, range.second); auto custom_vec_ptr_out = custom_vec_outs_ptr.back(); for (int idx = ctx_tensor_vec.size() - 1; idx >= 0; --idx) { *(ctx_tensor_vec[idx]) = *(custom_vec_ptr_out.back().get()); custom_vec_ptr_out.pop_back(); } custom_vec_outs_ptr.pop_back(); } VLOG(3) << "Mapped Output[" << out_idx << "] with range[" << range.first << "," << range.second << "]."; } // delete newed paddle::Tensor for outputs while calling user kernel function for (size_t i = 0; i < custom_outs.size(); ++i) { delete custom_outs[i]; } for (size_t i = 0; i < custom_vec_outs.size(); ++i) { for (size_t j = 0; j < custom_vec_outs[i].size(); ++j) { delete custom_vec_outs[i][j]; } } } void RegisterKernelWithMetaInfo( const std::vector& op_kernel_infos) { for (size_t i = 0; i < op_kernel_infos.size(); ++i) { auto& kernel_info = op_kernel_infos[i]; auto op_type = OpKernelInfoHelper::GetOpName(kernel_info); auto kernel_key = OpKernelInfoHelper::GetKernelKey(kernel_info); VLOG(3) << "[CUSTOM KERNEL] registering [" << op_type << "]" << kernel_key; // 1.Check whether this kernel is valid for a specific operator PADDLE_ENFORCE_EQ( pten::KernelFactory::Instance().HasCompatiblePtenKernel(op_type), true, platform::errors::InvalidArgument( "[CUSTOM KERNEL] %s is not ready for custom kernel registering.", op_type)); // 2.Check whether kernel_key has been already registed PADDLE_ENFORCE_EQ( pten::KernelFactory::Instance().kernels()[op_type].find(kernel_key), pten::KernelFactory::Instance().kernels()[op_type].end(), platform::errors::InvalidArgument( "[CUSTOM KERNEL] The operator <%s>'s kernel: %s has been " "already existed in Paddle, please contribute PR if need " "to optimize the kernel code. Custom kernel do NOT support " "to replace existing kernel in Paddle.", op_type, kernel_key)); // pten::KernelFn pten::KernelFn kernel_fn = [kernel_info](pten::KernelContext* ctx) { VLOG(3) << "[CUSTOM KERNEL] run custom PTEN kernel func in lambda."; RunKernelFunc(ctx, kernel_info); }; // variadic_kernel_fn void* variadic_kernel_fn = OpKernelInfoHelper::GetVariadicKernelFn(kernel_info); pten::Kernel kernel(kernel_fn, variadic_kernel_fn); // args info ParseArgs(kernel_info, kernel.mutable_args_def()); // register custom kernel to pten::KernelFactory pten::KernelFactory::Instance().kernels()[op_type][kernel_key] = kernel; VLOG(3) << "[CUSTOM KERNEL] Successed in registering operator <" << op_type << ">'s kernel " << kernel_key << " to Paddle. " << "It will be used like native ones."; } } void RegisterKernelWithMetaInfoMap( const paddle::OpKernelInfoMap& op_kernel_info_map) { auto& kernel_info_map = op_kernel_info_map.GetMap(); VLOG(3) << "[CUSTOM KERNEL] size of op_kernel_info_map: " << kernel_info_map.size(); // pair: {op_type, OpKernelInfo} for (auto& pair : kernel_info_map) { VLOG(3) << "[CUSTOM KERNEL] pair first -> op name: " << pair.first; RegisterKernelWithMetaInfo(pair.second); } } void LoadCustomKernelLib(const std::string& dso_lib_path, void* dso_handle) { #ifdef _LINUX typedef OpKernelInfoMap& get_op_kernel_info_map_t(); auto* func = reinterpret_cast( dlsym(dso_handle, "PD_GetOpKernelInfoMap")); if (func == nullptr) { LOG(WARNING) << "Skipped lib [" << dso_lib_path << "]: fail to find " << "PD_GetOpKernelInfoMap symbol in this lib."; return; } auto& op_kernel_info_map = func(); RegisterKernelWithMetaInfoMap(op_kernel_info_map); LOG(INFO) << "Successed in loading custom kernels in lib: " << dso_lib_path; #else VLOG(3) << "Unsupported: Custom kernel is only implemented on Linux."; #endif return; } } // namespace framework } // namespace paddle