trt_engine.cc 12.8 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/backends/tensorrt/trt_engine.h"

#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
W
Wilber 已提交
20
#include <glog/logging.h>
W
Wilber 已提交
21 22 23
#include "paddle/phi/backends/dynload/tensorrt.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
W
Wilber 已提交
24
#include "paddle/phi/core/dense_tensor.h"
W
Wilber 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace infrt {
namespace backends {
namespace tensorrt {

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
static nvinfer1::IBuilder* createInferBuilder(
    nvinfer1::ILogger& logger) {  // NOLINT
  return static_cast<nvinfer1::IBuilder*>(
      phi::dynload::createInferBuilder_INTERNAL(&logger, NV_TENSORRT_VERSION));
}
static nvinfer1::IRuntime* createInferRuntime(
    nvinfer1::ILogger& logger) {  // NOLINT
  return static_cast<nvinfer1::IRuntime*>(
      phi::dynload::createInferRuntime_INTERNAL(&logger, NV_TENSORRT_VERSION));
}

W
Wilber 已提交
44
TrtEngine::TrtEngine(int device_id) : device_id_(device_id) {
W
Wilber 已提交
45 46 47 48 49 50
  FreshDeviceId();
  logger_.reset(new TrtLogger());
  builder_.reset(createInferBuilder(logger_->GetTrtLogger()));
  phi::dynload::initLibNvInferPlugins(&logger_->GetTrtLogger(), "");
}

W
Wilber 已提交
51
nvinfer1::IBuilder* TrtEngine::GetTrtBuilder() {
W
Wilber 已提交
52 53 54 55
  CHECK_NOTNULL(builder_);
  return builder_.get();
}

W
Wilber 已提交
56
void TrtEngine::Build(TrtUniquePtr<nvinfer1::INetworkDefinition> network,
W
Wilber 已提交
57 58 59 60 61 62
                      const BuildOptions& build_options) {
  FreshDeviceId();
  ModelToBuildEnv(std::move(network), build_options);
  CHECK_NOTNULL(engine_);
}

W
Wilber 已提交
63
bool TrtEngine::ModelToBuildEnv(
W
Wilber 已提交
64 65 66 67 68 69 70 71 72 73
    TrtUniquePtr<nvinfer1::INetworkDefinition> network,
    const BuildOptions& build) {
  CHECK_NOTNULL(builder_);
  std::swap(network, network_);
  CHECK_NOTNULL(network_);
  // ModelToNetwork(network_, logger);
  NetworkToEngine(build);
  return true;
}

W
Wilber 已提交
74
bool TrtEngine::NetworkToEngine(const BuildOptions& build) {
W
Wilber 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  TrtUniquePtr<IBuilderConfig> config{builder_->createBuilderConfig()};
  CHECK_NOTNULL(config);
  CHECK(SetupNetworkAndConfig(build, *network_, *config));

#if IS_TRT_VERSION_LT(8000)
  engine_.reset(builder_->buildEngineWithConfig(*network_, *config));
#else
  serialized_engine_.reset(
      builder_->buildSerializedNetwork(*network_, *config));
  CHECK_NOTNULL(serialized_engine_);

  TrtUniquePtr<IRuntime> runtime{createInferRuntime(logger_->GetTrtLogger())};
  CHECK_NOTNULL(runtime);
  engine_.reset(runtime->deserializeCudaEngine(serialized_engine_->data(),
                                               serialized_engine_->size()));
  CHECK_NOTNULL(engine_);
#endif
  return true;
}

W
Wilber 已提交
95
bool TrtEngine::SetupNetworkAndConfig(const BuildOptions& build,
W
Wilber 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                                      INetworkDefinition& network,
                                      IBuilderConfig& config) {
  builder_->setMaxBatchSize(build.max_batch);
  // TODO(wilber): handle one engine - multi execution context case.
  IOptimizationProfile* profile{nullptr};
  if (!build.shapes.empty()) {
    profile = builder_->createOptimizationProfile();
    CHECK_NOTNULL(profile);
  }

  // Set formats and data types of inputs
  for (int32_t i = 0; i < network.getNbInputs(); ++i) {
    auto* input = network.getInput(i);
    if (!build.input_formats.empty()) {
      input->setType(build.input_formats[i].first);
      input->setAllowedFormats(build.input_formats[i].second);
    } else {
      switch (input->getType()) {
        case DataType::kINT32:
        case DataType::kBOOL:
        case DataType::kHALF:
          // Leave these as is.
          break;
        case DataType::kFLOAT:
        case DataType::kINT8:
          // User did not specify a floating-point format.  Default to kFLOAT.
          input->setType(DataType::kFLOAT);
          break;
      }
      input->setAllowedFormats(1U << static_cast<int>(TensorFormat::kLINEAR));
    }

    if (profile) {
      Dims dims = input->getDimensions();
      // TODO(wilber): shape tensor.
      const bool is_dynamic_input = std::any_of(
          dims.d, dims.d + dims.nbDims, [](int dim) { return dim == -1; });
      if (is_dynamic_input) {
        is_dynamic_shape_ = true;
        auto shape = build.shapes.find(input->getName());

        // If no shape is provided
        if (shape == build.shapes.end()) {
          // TODO(wilber): add infomation.
          CHECK(false);
        }
        LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
        std::vector<int> profile_dims{};
        profile_dims =
            shape->second[static_cast<size_t>(OptProfileSelector::kMIN)];
        CHECK(profile->setDimensions(input->getName(),
                                     OptProfileSelector::kMIN,
                                     VecToDims(profile_dims)));
        profile_dims =
            shape->second[static_cast<size_t>(OptProfileSelector::kOPT)];
        CHECK(profile->setDimensions(input->getName(),
                                     OptProfileSelector::kOPT,
                                     VecToDims(profile_dims)));
        profile_dims =
            shape->second[static_cast<size_t>(OptProfileSelector::kMAX)];
        CHECK(profile->setDimensions(input->getName(),
                                     OptProfileSelector::kMAX,
                                     VecToDims(profile_dims)));
      }
    }
  }

  if (profile && is_dynamic_shape_) {
    CHECK(profile->isValid());  // Required optimization profile is invalid
    CHECK_NE(config.addOptimizationProfile(profile), -1);
  }

  // Set formats and data types of outputs
  for (int32_t i = 0, n = network.getNbOutputs(); i < n; i++) {
    auto* output = network.getOutput(i);
    if (!build.output_formats.empty()) {
      // int outputFormatIndex = broadcastOutputFormats ? 0 : i;
      output->setType(build.output_formats[i].first);
      output->setAllowedFormats(build.output_formats[i].second);
    } else {
      output->setAllowedFormats(1U << static_cast<int>(TensorFormat::kLINEAR));
    }
  }

  config.setMaxWorkspaceSize(static_cast<size_t>(build.workspace) << 20);

  if (build.fp16) {
    config.setFlag(BuilderFlag::kFP16);
    bool support_fp16 = builder_->platformHasFastFp16();
    if (support_fp16) {
      LOG(INFO) << "Run INFRT-TRT FP16 mode";
    } else {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    }
  }

  if (build.tf32) {
    config.setFlag(BuilderFlag::kTF32);
    bool support_tf32 = builder_->platformHasTf32();
    if (support_tf32) {
      LOG(INFO) << "Run INFRT-TRT TF32 mode";
    } else {
      LOG(INFO) << "You specify TF32 mode, but the hardware do not support "
                   "TF32 speed up, use FP32 instead.";
    }
  }

  // TODO(wilber): other precision.

  // TODO(wilber): precision config.
  switch (build.precision_constraints) {
    case PrecisionConstraints::kNONE:
      // It's the default for TensorRT.
      break;
    case PrecisionConstraints::kOBEY:
      config.setFlag(BuilderFlag::kOBEY_PRECISION_CONSTRAINTS);
      break;
    case PrecisionConstraints::kPREFER:
      config.setFlag(BuilderFlag::kPREFER_PRECISION_CONSTRAINTS);
      break;
  }

  // TODO(TRT): DLA config.

  // TODO(TRT): int8 config.
  // TODO(TRT): support int8
  if (build.int8) {
    assert(false);
    config.setFlag(BuilderFlag::kINT8);
    bool support_int8 = builder_->platformHasFastInt8();
    if (support_int8) {
      LOG(INFO) << "Run INFRT-TRT FP16 mode";
    }
  }

  // TODO(TRT): calib config.

  // TODO(TRT): sparse config.

  return true;
}

W
Wilber 已提交
239 240 241 242 243 244 245 246 247 248 249
void TrtEngine::PrepareOutputHandle(const std::string& out_name) {
  phi::DenseTensor t;
  outputs_.emplace(out_name, t);
}

phi::DenseTensor* TrtEngine::GetOutput(const std::string& name) {
  return &outputs_[name];
}

size_t TrtEngine::GetOutputNum() const { return outputs_.size(); }

W
Wilber 已提交
250
bool TrtEngine::SetUpInference(
W
Wilber 已提交
251
    const InferenceOptions& inference,
W
Wilber 已提交
252
    const std::unordered_map<std::string, phi::DenseTensor*>& inputs) {
W
Wilber 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265
  // TODO(wilber): now only create one exec_context
  FreshDeviceId();
  CHECK(engine_ != nullptr);
  nvinfer1::IExecutionContext* ec = engine_->createExecutionContext();
  CHECK(ec != nullptr);
  contexts_.emplace_back(ec);
  bindings_.emplace_back(new Bindings());

  for (const auto& it : inputs) {
    const int bind_index = engine_->getBindingIndex(it.first.c_str());
    bindings_.front()->AddBinding(
        bind_index, it.first, true, it.second, nvinfer1::DataType::kFLOAT);
  }
W
Wilber 已提交
266
  for (auto& it : outputs_) {
W
Wilber 已提交
267 268
    const int bind_index = engine_->getBindingIndex(it.first.c_str());
    bindings_.front()->AddBinding(
W
Wilber 已提交
269
        bind_index, it.first, false, &it.second, nvinfer1::DataType::kFLOAT);
W
Wilber 已提交
270 271 272 273 274
  }

  return true;
}

W
Wilber 已提交
275
void TrtEngine::Run(const phi::GPUContext& ctx) {
W
Wilber 已提交
276 277 278 279 280 281 282
  if (is_dynamic_shape_) {
    DynamicRun(ctx);
  } else {
    StaticRun(ctx);
  }
}

W
Wilber 已提交
283
void TrtEngine::StaticRun(const phi::GPUContext& ctx) {
W
Wilber 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  const int num_bindings = engine_->getNbBindings();
  std::vector<void*> buffers(num_bindings, nullptr);

  int runtime_batch = -1;
  auto input_binds = bindings_.front()->GetInputBindings();
  for (auto bind : input_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    buffers[bind_index] =
        const_cast<void*>(static_cast<const void*>(bind.buffer->data<float>()));
    if (runtime_batch != -1) {
      CHECK_EQ(runtime_batch, phi::vectorize<int64_t>(bind.buffer->dims())[0]);
    }
    runtime_batch = bind.buffer->dims()[0];
  }

  auto output_binds = bindings_.front()->GetOutputBindings();
  for (auto bind : output_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    std::vector<int32_t> ddim;
    auto dims = engine_->getBindingDimensions(bind_index);
W
Wilber 已提交
304
    CHECK_NE(runtime_batch, -1) << "runtime_batch should not be -1.";
W
Wilber 已提交
305 306 307 308 309
    ddim.push_back(runtime_batch);
    for (int i = 0; i < dims.nbDims; ++i) {
      ddim.push_back(dims.d[i]);
    }
    bind.buffer->Resize(phi::make_ddim(ddim));
W
Wilber 已提交
310
    // TODO(wilber): now only support float output.
W
Wilber 已提交
311 312 313 314 315 316 317 318
    ctx.Alloc<float>(bind.buffer, sizeof(float) * bind.buffer->numel());
    buffers[bind_index] = static_cast<void*>(bind.buffer->data<float>());
  }

  contexts_.front()->enqueue(
      runtime_batch, buffers.data(), ctx.stream(), nullptr);
}

W
Wilber 已提交
319
void TrtEngine::DynamicRun(const phi::GPUContext& ctx) {
W
Wilber 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  const int num_bindings = engine_->getNbBindings();
  std::vector<void*> buffers(num_bindings, nullptr);

  auto input_binds = bindings_.front()->GetInputBindings();
  for (auto bind : input_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    buffers[bind_index] =
        const_cast<void*>(static_cast<const void*>(bind.buffer->data<float>()));
    nvinfer1::Dims trt_dims;
    trt_dims.nbDims = bind.buffer->dims().size();

    for (int i = 0; i < trt_dims.nbDims; ++i) {
      trt_dims.d[i] = bind.buffer->dims()[i];
    }
    contexts_.front()->setBindingDimensions(bind_index, trt_dims);
  }

  CHECK(contexts_.front()->allInputDimensionsSpecified());

  auto output_binds = bindings_.front()->GetOutputBindings();
  for (auto bind : output_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    auto dims = contexts_.front()->getBindingDimensions(bind_index);
    std::vector<int32_t> ddim(dims.nbDims);
    for (int i = 0; i < dims.nbDims; ++i) {
      ddim[i] = dims.d[i];
    }
    bind.buffer->Resize(phi::make_ddim(ddim));
    ctx.Alloc<float>(bind.buffer, sizeof(float) * bind.buffer->numel());
    buffers[bind_index] = static_cast<void*>(bind.buffer->data<float>());
  }

  contexts_.front()->enqueueV2(buffers.data(), ctx.stream(), nullptr);
}

W
Wilber 已提交
355
void TrtEngine::FreshDeviceId() {
W
Wilber 已提交
356 357 358 359 360 361
  int count;
  cudaGetDeviceCount(&count);
  CHECK_LT(device_id_, count);
  phi::backends::gpu::SetDeviceId(device_id_);
}

W
Wilber 已提交
362
void TrtEngine::GetEngineInfo() {
W
Wilber 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      engine_->createEngineInspector());
  infer_inspector->setExecutionContext(contexts_.front().get());
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

}  // namespace tensorrt
}  // namespace backends
}  // namespace infrt