trt_engine.cc 12.4 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/backends/tensorrt/trt_engine.h"

#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
W
Wilber 已提交
20
#include <glog/logging.h>
W
Wilber 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/phi/backends/dynload/tensorrt.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"

namespace infrt {
namespace backends {
namespace tensorrt {

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
static nvinfer1::IBuilder* createInferBuilder(
    nvinfer1::ILogger& logger) {  // NOLINT
  return static_cast<nvinfer1::IBuilder*>(
      phi::dynload::createInferBuilder_INTERNAL(&logger, NV_TENSORRT_VERSION));
}
static nvinfer1::IRuntime* createInferRuntime(
    nvinfer1::ILogger& logger) {  // NOLINT
  return static_cast<nvinfer1::IRuntime*>(
      phi::dynload::createInferRuntime_INTERNAL(&logger, NV_TENSORRT_VERSION));
}

W
Wilber 已提交
43
TrtEngine::TrtEngine(int device_id) : device_id_(device_id) {
W
Wilber 已提交
44 45 46 47 48 49
  FreshDeviceId();
  logger_.reset(new TrtLogger());
  builder_.reset(createInferBuilder(logger_->GetTrtLogger()));
  phi::dynload::initLibNvInferPlugins(&logger_->GetTrtLogger(), "");
}

W
Wilber 已提交
50
nvinfer1::IBuilder* TrtEngine::GetTrtBuilder() {
W
Wilber 已提交
51 52 53 54
  CHECK_NOTNULL(builder_);
  return builder_.get();
}

W
Wilber 已提交
55
void TrtEngine::Build(TrtUniquePtr<nvinfer1::INetworkDefinition> network,
W
Wilber 已提交
56 57 58 59 60 61
                      const BuildOptions& build_options) {
  FreshDeviceId();
  ModelToBuildEnv(std::move(network), build_options);
  CHECK_NOTNULL(engine_);
}

W
Wilber 已提交
62
bool TrtEngine::ModelToBuildEnv(
W
Wilber 已提交
63 64 65 66 67 68 69 70 71 72
    TrtUniquePtr<nvinfer1::INetworkDefinition> network,
    const BuildOptions& build) {
  CHECK_NOTNULL(builder_);
  std::swap(network, network_);
  CHECK_NOTNULL(network_);
  // ModelToNetwork(network_, logger);
  NetworkToEngine(build);
  return true;
}

W
Wilber 已提交
73
bool TrtEngine::NetworkToEngine(const BuildOptions& build) {
W
Wilber 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  TrtUniquePtr<IBuilderConfig> config{builder_->createBuilderConfig()};
  CHECK_NOTNULL(config);
  CHECK(SetupNetworkAndConfig(build, *network_, *config));

#if IS_TRT_VERSION_LT(8000)
  engine_.reset(builder_->buildEngineWithConfig(*network_, *config));
#else
  serialized_engine_.reset(
      builder_->buildSerializedNetwork(*network_, *config));
  CHECK_NOTNULL(serialized_engine_);

  TrtUniquePtr<IRuntime> runtime{createInferRuntime(logger_->GetTrtLogger())};
  CHECK_NOTNULL(runtime);
  engine_.reset(runtime->deserializeCudaEngine(serialized_engine_->data(),
                                               serialized_engine_->size()));
  CHECK_NOTNULL(engine_);
#endif
  return true;
}

W
Wilber 已提交
94
bool TrtEngine::SetupNetworkAndConfig(const BuildOptions& build,
W
Wilber 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                                      INetworkDefinition& network,
                                      IBuilderConfig& config) {
  builder_->setMaxBatchSize(build.max_batch);
  // TODO(wilber): handle one engine - multi execution context case.
  IOptimizationProfile* profile{nullptr};
  if (!build.shapes.empty()) {
    profile = builder_->createOptimizationProfile();
    CHECK_NOTNULL(profile);
  }

  // Set formats and data types of inputs
  for (int32_t i = 0; i < network.getNbInputs(); ++i) {
    auto* input = network.getInput(i);
    if (!build.input_formats.empty()) {
      input->setType(build.input_formats[i].first);
      input->setAllowedFormats(build.input_formats[i].second);
    } else {
      switch (input->getType()) {
        case DataType::kINT32:
        case DataType::kBOOL:
        case DataType::kHALF:
          // Leave these as is.
          break;
        case DataType::kFLOAT:
        case DataType::kINT8:
          // User did not specify a floating-point format.  Default to kFLOAT.
          input->setType(DataType::kFLOAT);
          break;
      }
      input->setAllowedFormats(1U << static_cast<int>(TensorFormat::kLINEAR));
    }

    if (profile) {
      Dims dims = input->getDimensions();
      // TODO(wilber): shape tensor.
      const bool is_dynamic_input = std::any_of(
          dims.d, dims.d + dims.nbDims, [](int dim) { return dim == -1; });
      if (is_dynamic_input) {
        is_dynamic_shape_ = true;
        auto shape = build.shapes.find(input->getName());

        // If no shape is provided
        if (shape == build.shapes.end()) {
          // TODO(wilber): add infomation.
          CHECK(false);
        }
        LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
        std::vector<int> profile_dims{};
        profile_dims =
            shape->second[static_cast<size_t>(OptProfileSelector::kMIN)];
        CHECK(profile->setDimensions(input->getName(),
                                     OptProfileSelector::kMIN,
                                     VecToDims(profile_dims)));
        profile_dims =
            shape->second[static_cast<size_t>(OptProfileSelector::kOPT)];
        CHECK(profile->setDimensions(input->getName(),
                                     OptProfileSelector::kOPT,
                                     VecToDims(profile_dims)));
        profile_dims =
            shape->second[static_cast<size_t>(OptProfileSelector::kMAX)];
        CHECK(profile->setDimensions(input->getName(),
                                     OptProfileSelector::kMAX,
                                     VecToDims(profile_dims)));
      }
    }
  }

  if (profile && is_dynamic_shape_) {
    CHECK(profile->isValid());  // Required optimization profile is invalid
    CHECK_NE(config.addOptimizationProfile(profile), -1);
  }

  // Set formats and data types of outputs
  for (int32_t i = 0, n = network.getNbOutputs(); i < n; i++) {
    auto* output = network.getOutput(i);
    if (!build.output_formats.empty()) {
      // int outputFormatIndex = broadcastOutputFormats ? 0 : i;
      output->setType(build.output_formats[i].first);
      output->setAllowedFormats(build.output_formats[i].second);
    } else {
      output->setAllowedFormats(1U << static_cast<int>(TensorFormat::kLINEAR));
    }
  }

  config.setMaxWorkspaceSize(static_cast<size_t>(build.workspace) << 20);

  if (build.fp16) {
    config.setFlag(BuilderFlag::kFP16);
    bool support_fp16 = builder_->platformHasFastFp16();
    if (support_fp16) {
      LOG(INFO) << "Run INFRT-TRT FP16 mode";
    } else {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    }
  }

  if (build.tf32) {
    config.setFlag(BuilderFlag::kTF32);
    bool support_tf32 = builder_->platformHasTf32();
    if (support_tf32) {
      LOG(INFO) << "Run INFRT-TRT TF32 mode";
    } else {
      LOG(INFO) << "You specify TF32 mode, but the hardware do not support "
                   "TF32 speed up, use FP32 instead.";
    }
  }

  // TODO(wilber): other precision.

  // TODO(wilber): precision config.
  switch (build.precision_constraints) {
    case PrecisionConstraints::kNONE:
      // It's the default for TensorRT.
      break;
    case PrecisionConstraints::kOBEY:
      config.setFlag(BuilderFlag::kOBEY_PRECISION_CONSTRAINTS);
      break;
    case PrecisionConstraints::kPREFER:
      config.setFlag(BuilderFlag::kPREFER_PRECISION_CONSTRAINTS);
      break;
  }

  // TODO(TRT): DLA config.

  // TODO(TRT): int8 config.
  // TODO(TRT): support int8
  if (build.int8) {
    assert(false);
    config.setFlag(BuilderFlag::kINT8);
    bool support_int8 = builder_->platformHasFastInt8();
    if (support_int8) {
      LOG(INFO) << "Run INFRT-TRT FP16 mode";
    }
  }

  // TODO(TRT): calib config.

  // TODO(TRT): sparse config.

  return true;
}

W
Wilber 已提交
238
bool TrtEngine::SetUpInference(
W
Wilber 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    const InferenceOptions& inference,
    const std::unordered_map<std::string, phi::DenseTensor*>& inputs,
    std::unordered_map<std::string, phi::DenseTensor*>* outputs) {
  // TODO(wilber): now only create one exec_context
  FreshDeviceId();
  CHECK(engine_ != nullptr);
  nvinfer1::IExecutionContext* ec = engine_->createExecutionContext();
  CHECK(ec != nullptr);
  contexts_.emplace_back(ec);
  bindings_.emplace_back(new Bindings());

  for (const auto& it : inputs) {
    const int bind_index = engine_->getBindingIndex(it.first.c_str());
    bindings_.front()->AddBinding(
        bind_index, it.first, true, it.second, nvinfer1::DataType::kFLOAT);
  }
  for (auto& it : *outputs) {
    const int bind_index = engine_->getBindingIndex(it.first.c_str());
    bindings_.front()->AddBinding(
        bind_index, it.first, false, it.second, nvinfer1::DataType::kFLOAT);
  }

  return true;
}

W
Wilber 已提交
264
void TrtEngine::Run(const phi::GPUContext& ctx) {
W
Wilber 已提交
265 266 267 268 269 270 271
  if (is_dynamic_shape_) {
    DynamicRun(ctx);
  } else {
    StaticRun(ctx);
  }
}

W
Wilber 已提交
272
void TrtEngine::StaticRun(const phi::GPUContext& ctx) {
W
Wilber 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  const int num_bindings = engine_->getNbBindings();
  std::vector<void*> buffers(num_bindings, nullptr);

  int runtime_batch = -1;
  auto input_binds = bindings_.front()->GetInputBindings();
  for (auto bind : input_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    buffers[bind_index] =
        const_cast<void*>(static_cast<const void*>(bind.buffer->data<float>()));
    if (runtime_batch != -1) {
      CHECK_EQ(runtime_batch, phi::vectorize<int64_t>(bind.buffer->dims())[0]);
    }
    runtime_batch = bind.buffer->dims()[0];
  }

  auto output_binds = bindings_.front()->GetOutputBindings();
  for (auto bind : output_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    std::vector<int32_t> ddim;
    auto dims = engine_->getBindingDimensions(bind_index);
    ddim.push_back(runtime_batch);
    for (int i = 0; i < dims.nbDims; ++i) {
      ddim.push_back(dims.d[i]);
    }
    bind.buffer->Resize(phi::make_ddim(ddim));
    ctx.Alloc<float>(bind.buffer, sizeof(float) * bind.buffer->numel());
    buffers[bind_index] = static_cast<void*>(bind.buffer->data<float>());
  }

  contexts_.front()->enqueue(
      runtime_batch, buffers.data(), ctx.stream(), nullptr);
}

W
Wilber 已提交
306
void TrtEngine::DynamicRun(const phi::GPUContext& ctx) {
W
Wilber 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  const int num_bindings = engine_->getNbBindings();
  std::vector<void*> buffers(num_bindings, nullptr);

  auto input_binds = bindings_.front()->GetInputBindings();
  for (auto bind : input_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    buffers[bind_index] =
        const_cast<void*>(static_cast<const void*>(bind.buffer->data<float>()));
    nvinfer1::Dims trt_dims;
    trt_dims.nbDims = bind.buffer->dims().size();

    for (int i = 0; i < trt_dims.nbDims; ++i) {
      trt_dims.d[i] = bind.buffer->dims()[i];
    }
    contexts_.front()->setBindingDimensions(bind_index, trt_dims);
  }

  CHECK(contexts_.front()->allInputDimensionsSpecified());

  auto output_binds = bindings_.front()->GetOutputBindings();
  for (auto bind : output_binds) {
    const int bind_index = engine_->getBindingIndex(bind.name.c_str());
    auto dims = contexts_.front()->getBindingDimensions(bind_index);
    std::vector<int32_t> ddim(dims.nbDims);
    for (int i = 0; i < dims.nbDims; ++i) {
      ddim[i] = dims.d[i];
    }
    bind.buffer->Resize(phi::make_ddim(ddim));
    ctx.Alloc<float>(bind.buffer, sizeof(float) * bind.buffer->numel());
    buffers[bind_index] = static_cast<void*>(bind.buffer->data<float>());
  }

  contexts_.front()->enqueueV2(buffers.data(), ctx.stream(), nullptr);
}

W
Wilber 已提交
342
void TrtEngine::FreshDeviceId() {
W
Wilber 已提交
343 344 345 346 347 348
  int count;
  cudaGetDeviceCount(&count);
  CHECK_LT(device_id_, count);
  phi::backends::gpu::SetDeviceId(device_id_);
}

W
Wilber 已提交
349
void TrtEngine::GetEngineInfo() {
W
Wilber 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      engine_->createEngineInspector());
  infer_inspector->setExecutionContext(contexts_.front().get());
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

}  // namespace tensorrt
}  // namespace backends
}  // namespace infrt