test_case.py 10.7 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
from functools import partial
25
import paddle.fluid.optimizer as optimizer
L
liym27 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226


class TestAPICase(unittest.TestCase):
    def test_return_single_var(self):
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[4, 3], dtype='int32', value=3)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

            # call fn_1
            out_0 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_1, fn_2)], default=fn_3)

            # call fn_2
            out_1 = layers.case(
                pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3)

            # call default fn_3
            out_2 = layers.case(
                pred_fn_pairs=((pred_2, fn_1), (pred_2, fn_2)), default=fn_3)

            # no default, call fn_2
            out_3 = layers.case(pred_fn_pairs=[(pred_1, fn_2)])

            # no default, call fn_2. but pred_2 is false
            out_4 = layers.case(pred_fn_pairs=[(pred_2, fn_2)])

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)

            res = exe.run(main_program,
                          fetch_list=[out_0, out_1, out_2, out_3, out_4])

            self.assertTrue(np.allclose(res[0], 1))
            self.assertTrue(np.allclose(res[1], 2))
            self.assertTrue(np.allclose(res[2], 3))
            self.assertTrue(np.allclose(res[3], 2))
            self.assertTrue(np.allclose(res[4], 2))

    def test_return_var_tuple(self):
        def fn_1():
            return layers.fill_constant(
                shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
                    shape=[2, 3], dtype='float32', value=2)

        def fn_2():
            return layers.fill_constant(
                shape=[3, 4], dtype='int32', value=3), layers.fill_constant(
                    shape=[4, 5], dtype='float32', value=4)

        def fn_3():
            return layers.fill_constant(
                shape=[5], dtype='int32', value=5), layers.fill_constant(
                    shape=[5, 6], dtype='float32', value=6)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=3)

            pred_1 = layers.equal(x, y)  # true
            pred_2 = layers.equal(x, z)  # false

            out = layers.case(((pred_1, fn_1), (pred_2, fn_2)), fn_3)

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)

            self.assertTrue(
                np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
            self.assertTrue(
                np.allclose(
                    np.asarray(ret[1]), np.full((2, 3), 2, np.float32)))


class TestAPICase_Nested(unittest.TestCase):
    def test_nested_case(self):
        def fn_1(x=1):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
            out = layers.case(pred_fn_pairs=[(var_5 < var_6, partial(
                layers.fill_constant, shape=[1], dtype='int32', value=x)),
                                             (var_5 == var_6, partial(
                                                 layers.fill_constant,
                                                 shape=[2],
                                                 dtype='int32',
                                                 value=x))])
            return out

        def fn_2(x=2):
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
            out = layers.case(pred_fn_pairs=[(var_5 < var_6, partial(
                fn_1, x=x)), (var_5 == var_6, partial(
                    layers.fill_constant, shape=[2], dtype='int32', value=x))])
            return out

        def fn_3():
            var_5 = layers.fill_constant(shape=[1], dtype='int32', value=5)
            var_6 = layers.fill_constant(shape=[1], dtype='int32', value=6)
            out = layers.case(pred_fn_pairs=[(var_5 < var_6, partial(
                fn_2, x=3)), (var_5 == var_6, partial(
                    layers.fill_constant, shape=[2], dtype='int32', value=7))])
            return out

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3

            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

            out_2 = layers.case(
                pred_fn_pairs=[(pred_2, fn_1), (pred_1, fn_2)], default=fn_3)

            out_3 = layers.case(
                pred_fn_pairs=[(x == y, fn_1), (x == z, fn_2)], default=fn_3)

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)

            res = exe.run(main_program, fetch_list=[out_1, out_2, out_3])

            self.assertTrue(np.allclose(res[0], 1))
            self.assertTrue(np.allclose(res[1], 2))
            self.assertTrue(np.allclose(res[2], 3))


class TestAPICase_Error(unittest.TestCase):
    def test_error(self):
        def fn_1():
            return layers.fill_constant(shape=[4, 2], dtype='int32', value=1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)
            pred_1 = layers.less_than(z, x)  # true

            # The type of 'pred_fn_pairs' in case must be list or  tuple
            def type_error_pred_fn_pairs():
                layers.case(pred_fn_pairs=1, default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_pairs)

            # The elements' type of 'pred_fn_pairs' in Op(case) must be tuple
            def type_error_pred_fn_1():
                layers.case(pred_fn_pairs=[1], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_1)

            # The tuple's size of 'pred_fn_pairs' in Op(case) must be 2
            def type_error_pred_fn_2():
                layers.case(pred_fn_pairs=[(1, 2, 3)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred_fn_2)

            # The pred's type of 'pred_fn_pairs' in Op(case) must be bool Variable
            def type_error_pred():
                layers.case(pred_fn_pairs=[(1, fn_1)], default=fn_1)

            self.assertRaises(TypeError, type_error_pred)

            # The function of pred_fn_pairs in case must be callable
            def type_error_fn():
                layers.case(pred_fn_pairs=[(pred_1, 2)], default=fn_1)

            self.assertRaises(TypeError, type_error_fn)

            # The default in Op(case) must be callable
            def type_error_default():
                layers.case(pred_fn_pairs=[(pred_1, fn_1)], default=fn_1())

            self.assertRaises(TypeError, type_error_default)


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
# when optimizer in case
class TestMutiTask(unittest.TestCase):
    def test_optimizer_in_case(self):
        BATCH_SIZE = 1
        INPUT_SIZE = 784
        EPOCH_NUM = 2

        x = fluid.data(
            name='x', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32')
        y = fluid.data(
            name='y', shape=[BATCH_SIZE, INPUT_SIZE], dtype='float32')

        switch_id = fluid.data(name='switch_id', shape=[1], dtype='int32')

        one = layers.fill_constant(shape=[1], dtype='int32', value=1)
        adam = optimizer.Adam(learning_rate=0.001)
        adagrad = optimizer.Adagrad(learning_rate=0.001)

        def fn_1():
            sum = layers.elementwise_mul(x, y)
            loss = layers.mean(sum, name="f_1_loss")
            adam.minimize(loss)

        def fn_2():
            sum = layers.elementwise_mul(x, y)
            loss = layers.mean(sum, name="f_2_loss")
            adagrad.minimize(loss)

        layers.case(pred_fn_pairs=[(switch_id == one, fn_1)], default=fn_2)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        for epoch in range(EPOCH_NUM):
            np.random.seed(epoch)
            feed_image = np.random.random(
                size=[BATCH_SIZE, INPUT_SIZE]).astype('float32')
            main_program = fluid.default_main_program()
            out = exe.run(main_program,
                          feed={
                              'x': feed_image,
                              'y': feed_image,
                              'switch_id': np.array([epoch]).astype('int32')
                          },
                          fetch_list=[])


L
liym27 已提交
274 275
if __name__ == '__main__':
    unittest.main()