mnist.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time
import cProfile
Y
yi.wu 已提交
23
import os
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler

SEED = 1
DTYPE = "float32"

# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def get_model(args):
S
sneaxiy 已提交
69
    dshape = [1, 28, 28]
Y
yi.wu 已提交
70 71 72 73 74 75
    if args.use_reader_op:
        filelist = [
            os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
        ]
        data_file = fluid.layers.open_files(
            filenames=filelist,
S
sneaxiy 已提交
76
            shapes=[[-1] + dshape, (-1, 1)],
Y
yi.wu 已提交
77 78
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
Y
yi.wu 已提交
79 80
            thread_num=args.gpus,
            pass_num=args.pass_num)
Y
yi.wu 已提交
81 82 83 84
        data_file = fluid.layers.double_buffer(
            fluid.layers.batch(
                data_file, batch_size=args.batch_size))
        images, label = fluid.layers.read_file(data_file)
S
sneaxiy 已提交
85 86 87 88 89 90 91 92 93 94
    elif args.use_py_reader_op:
        data_file, feed_queue = fluid.layers.py_array_reader(
            capacity=args.feed_queue_capacity,
            shapes=[[-1] + dshape, [-1, 1]],
            lod_levels=[0, 0],
            dtypes=['float32', 'int64'])
        data_file = fluid.layers.double_buffer(
            fluid.layers.batch(
                data_file, batch_size=args.batch_size))
        images, label = fluid.layers.read_file(data_file)
Y
yi.wu 已提交
95
    else:
S
sneaxiy 已提交
96
        images = fluid.layers.data(name='pixel', shape=dshape, dtype=DTYPE)
Y
yi.wu 已提交
97
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    if args.device == 'CPU' and args.cpus > 1:
        places = fluid.layers.get_places(args.cpus)
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            predict = cnn_model(pd.read_input(images))
            label = pd.read_input(label)
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)
            batch_acc = fluid.layers.accuracy(input=predict, label=label)

            pd.write_output(avg_cost)
            pd.write_output(batch_acc)

        avg_cost, batch_acc = pd()
        avg_cost = fluid.layers.mean(avg_cost)
        batch_acc = fluid.layers.mean(batch_acc)
    else:
        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        # Evaluator
        batch_acc = fluid.layers.accuracy(input=predict, label=label)
123 124 125 126 127 128 129 130 131

    # inference program
    inference_program = fluid.default_main_program().clone()

    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)

    # Reader
S
sneaxiy 已提交
132 133
    underlying_train_reader = paddle.dataset.mnist.train()
    underlying_test_reader = paddle.dataset.mnist.test()
134
    train_reader = paddle.batch(
S
sneaxiy 已提交
135
        underlying_train_reader, batch_size=args.batch_size * args.gpus)
136
    test_reader = paddle.batch(
S
sneaxiy 已提交
137 138 139 140 141 142 143 144
        underlying_test_reader, batch_size=args.batch_size)

    if not args.use_reader_op and args.use_py_reader_op:
        return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc, \
    feed_queue, underlying_train_reader, underlying_test_reader, \
    (dshape, [1])
    else:
        return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc