elementwise_div_op.h 10.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17 18 19
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"

G
gongweibao 已提交
20 21 22
namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
template <typename DeviceContext, typename T>
void default_elementwise_sub(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseSubFunctor<T>(), z);
  }
}

39 40 41 42 43
template <typename DeviceContext, typename T>
void default_elementwise_div(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
44 45 46
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
47 48 49 50 51 52
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseDivFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseDivFunctor<T>(), z);
  }
53 54
}

Q
QI JUN 已提交
55
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
56
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
57 58
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
59 60 61
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
62
    z->mutable_data<T>(ctx.GetPlace());
63

64 65 66 67 68
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    int axis = ctx.Attr<int>("axis");
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
    auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
    auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);
69
    pten::DivideRawKernel<T>(
W
Wilber 已提交
70 71 72
        static_cast<const typename framework::ConvertToPtenContext<
            DeviceContext>::TYPE&>(dev_ctx),
        *pt_x.get(), *pt_y.get(), axis, pt_z.get());
G
gongweibao 已提交
73 74 75 76
  }
};

template <typename T>
C
chengduoZH 已提交
77 78
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
79 80
};

81 82 83 84 85 86 87
template <typename T>
struct DivGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
88 89 90 91
    return dout / y_conj;
  }
};

G
gongweibao 已提交
92
template <typename T>
C
chengduoZH 已提交
93 94
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
95
    return -dout * out / y;
G
gongweibao 已提交
96 97 98
  }
};

99 100 101 102 103 104 105
template <typename T>
struct DivGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> out_div_y_conj((out / y).real,
106 107 108 109 110
                                                -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

111 112 113 114 115 116 117
template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

118 119 120
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
121 122 123 124
ElementwiseDivGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
125
  int axis = ctx.Attr<int>("axis");
126

127 128 129 130
  ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

131
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
132 133 134
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
135 136 137 138
ElementwiseDivGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy);
139 140
#endif

Q
QI JUN 已提交
141
template <typename DeviceContext, typename T>
142
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
143 144
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
145
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
146 147
    using Tensor = framework::Tensor;

148
    auto* x = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
149 150 151 152 153
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
154

155
    ElementwiseDivGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
G
gongweibao 已提交
156 157 158
  }
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput("DOut")) {
      ctx->ShareDim("DX", "DOut");
      ctx->ShareLoD("DX", "DOut");
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DX", "DDOut");
      ctx->ShareLoD("DX", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
C
chentianyu03 已提交
182
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Out");
183 184

#ifdef PADDLE_WITH_MKLDNN
185
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
186 187 188 189 190 191 192
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
};

template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::Tensor;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Input<Tensor>("Out");
    auto* ddX = ctx.Input<Tensor>("DDX");
    auto* ddY = ctx.Input<Tensor>("DDY");
    auto* dX = ctx.Input<Tensor>("DX");

    auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dOut = ctx.Output<Tensor>("DOut");
    auto* ddOut = ctx.Output<Tensor>("DDOut");

    int axis = ctx.Attr<int>("axis");

    if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    // ddX_safe == null ? 0 : ddX
    // ddY_safe == null ? 0 : ddY
    Tensor ddX_safe, ddY_safe;
233
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dX, ddX, &ddX_safe);
234 235
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);

236 237 238 239 240 241
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    // dY = Out * dX * ddY / Y - dX * ddX / Y
    // dOut = - dX * ddY
    // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
    // inplace ddx
    Tensor tmp;
242
    if (dOut) {
243 244 245 246
      tmp = *dOut;
    } else {
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      tmp = ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
247 248 249
    }
    if (dY) {
      // dX_div_Y = dX / Y;
250
      Tensor dX_div_Y = tmp;
251
      default_elementwise_div<DeviceContext, T>(ctx, dX, Y, &dX_div_Y);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

      // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.

      // dY = Out * dX * ddY / Y - dX * ddX / Y
      ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
          ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
          DivGradDX<T>(), DivDoubleDY<T>());
    }

    if (ddOut) {
      // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
267
      default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, &tmp);
268 269
      default_elementwise_sub<DeviceContext, T>(ctx, &ddX_safe, &tmp, &tmp);
      default_elementwise_div<DeviceContext, T>(ctx, &tmp, Y, ddOut);
270 271 272 273 274 275 276 277 278
    }

    if (dOut) {
      // dOut = - dX * ddY
      default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto dout = framework::EigenVector<T>::Flatten(*dOut);
      dout.device(place) = static_cast<T>(-1) * dout;
279 280 281 282
    }
  }
};

G
gongweibao 已提交
283 284
}  // namespace operators
}  // namespace paddle