fleet_wrapper.h 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <ThreadPool.h>
23
#include <atomic>
X
xujiaqi01 已提交
24
#include <ctime>
D
dongdaxiang 已提交
25
#include <map>
D
dongdaxiang 已提交
26
#include <random>
27
#include <string>
28
#include <unordered_map>
29
#include <vector>
30

D
dongdaxiang 已提交
31
#include "paddle/fluid/framework/program_desc.h"
32
#include "paddle/fluid/framework/scope.h"
33
#include "paddle/fluid/framework/tensor.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
53 54
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
55 56 57 58 59 60 61
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
62 63 64 65
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pslib core dump
    sleep_seconds_before_fail_exit_ = 300;
66 67 68 69 70 71
    // pslib request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pslib connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pslib request max retry
    client2client_max_retry_ = 3;
72
    pull_local_thread_num_ = 25;
73
  }
74

X
xujiaqi01 已提交
75
  // set client to client communication config
76 77 78
  void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
                              int max_retry);

79 80 81
  void SetPullLocalThreadNum(int thread_num) {
    pull_local_thread_num_ = thread_num;
  }
82

X
xujiaqi01 已提交
83
  // Pull sparse variables from server in sync mode
84
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
85 86 87 88 89
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
90 91
                          int fea_dim,
                          const std::vector<std::string>& var_emb_names);
92 93 94 95

  // Pull sparse variables from server in async mode
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim
  // Param<out>: fea_values std::future
96 97 98 99 100
  std::future<int32_t> PullSparseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<uint64_t>* fea_keys,
      std::vector<std::vector<float>>* fea_values, int fea_dim);
101 102 103 104 105 106 107 108

  // Pull sparse variables from server in sync mode
  // pull immediately to tensors
  void PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                              uint64_t padding_id, platform::Place place,
                              std::vector<const LoDTensor*>* inputs,  // NOLINT
                              std::vector<LoDTensor*>* outputs);      // NOLINT

X
xujiaqi01 已提交
109
  // pull dense variables from server in sync mod
110 111
  // Param<in>: scope, table_id, var_names
  // Param<out>: void
112 113 114
  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
115 116 117
  // pull dense variables from server in async mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: pull_dense_status
118 119 120 121 122
  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* pull_dense_status);

X
xujiaqi01 已提交
123
  // push dense parameters(not gradients) to server in sync mode
D
dongdaxiang 已提交
124
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
D
dongdaxiang 已提交
125
                          const std::vector<std::string>& var_names);
126

127
  // Push dense variables to server in async mode
X
xujiaqi01 已提交
128
  // Param<in>: scope, table_id, var_names, scale_datanorm, batch_size
129 130 131 132
  // Param<out>: push_sparse_status
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
133 134
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size);
135

X
xujiaqi01 已提交
136
  // push dense variables to server in sync mode
D
dongdaxiang 已提交
137 138 139
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
140
  // Push sparse variables with labels to server in async mode
141 142 143 144 145 146 147 148 149 150 151 152
  std::vector<std::unordered_map<uint64_t, std::vector<float>>> local_tables_;
  void PullSparseToLocal(const uint64_t table_id, int fea_value_dim);
  void PullSparseVarsFromLocal(const Scope& scope, const uint64_t table_id,
                               const std::vector<std::string>& var_names,
                               std::vector<uint64_t>* fea_keys,
                               std::vector<std::vector<float>>* fea_values,
                               int fea_value_dim);
  void ClearLocalTable();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
  GetLocalTable() {
    return local_tables_;
  }
153

154
  // This is specially designed for click/show stats in server
X
xujiaqi01 已提交
155 156
  // Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
  //            sparse_grad_names, batch_size, use_cvm, dump_slot
157 158 159 160 161 162 163 164
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
165
      std::vector<::std::future<int32_t>>* push_sparse_status,
166
      const int batch_size, const bool use_cvm, const bool dump_slot,
167 168
      std::vector<uint64_t>* sparse_push_keys, const bool no_cvm,
      const bool scale_sparse_gradient_with_batch_size);
169

170 171 172 173 174 175 176 177 178
  // Push sparse variables to server in async mode
  void PushSparseFromTensorWithLabelAsync(
      const Scope& scope, const uint64_t table_id, int fea_dim,
      uint64_t padding_id, bool scale_sparse, const std::string& accesor,
      const std::string& click_name, platform::Place place,
      const std::vector<std::string>& input_names,
      std::vector<const LoDTensor*>* inputs,    // NOLINT
      std::vector<const LoDTensor*>* outputs);  // NOLINT

179 180 181 182 183 184 185 186 187 188 189 190 191
  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

X
xujiaqi01 已提交
192
  // init server
193
  void InitServer(const std::string& dist_desc, int index);
X
xujiaqi01 已提交
194
  // init trainer
195 196 197
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
X
xujiaqi01 已提交
198
  // stop server
199
  void StopServer();
200 201
  // finalize worker to make worker can be stop
  void FinalizeWorker();
X
xujiaqi01 已提交
202
  // run server
203
  uint64_t RunServer();
204 205
  // run server with ip port
  uint64_t RunServer(const std::string& ip, uint32_t port);
X
xujiaqi01 已提交
206
  // gather server ip
207
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
208
  // gather client ip
X
xjqbest 已提交
209
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
210
  // get client info
X
xjqbest 已提交
211
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
212
  // create client to client connection
X
xjqbest 已提交
213
  void CreateClient2ClientConnection();
214 215
  // flush all push requests
  void ClientFlush();
216 217 218 219
  // load from paddle model
  void LoadFromPaddleModel(Scope& scope, const uint64_t table_id,  // NOLINT
                           std::vector<std::string> var_list,
                           std::string model_path, std::string model_proto_file,
220
                           std::vector<std::string> table_var_list,
221
                           bool load_combine);
222 223

  void PrintTableStat(const uint64_t table_id);
224
  // mode = 0, load all feature
X
xujiaqi01 已提交
225
  // mode = 1, load delta feature, which means load diff
226
  void LoadModel(const std::string& path, const int mode);
227
  // mode = 0, load all feature
X
xujiaqi01 已提交
228
  // mode = 1, load delta feature, which means load diff
229 230
  void LoadModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
231 232 233
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);
234 235
  void SaveMultiTableOnePath(const std::vector<int>& table_ids,
                             const std::string& path, const int mode);
X
xujiaqi01 已提交
236 237 238 239 240 241 242
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
  // save model with prefix
  void SaveModelOneTablePrefix(const uint64_t table_id, const std::string& path,
                               const int mode, const std::string& prefix);
X
xujiaqi01 已提交
243
  // get save cache threshold
244
  double GetCacheThreshold(int table_id);
X
xujiaqi01 已提交
245
  // shuffle cache model between servers
246 247
  void CacheShuffle(int table_id, const std::string& path, const int mode,
                    const double cache_threshold);
X
xujiaqi01 已提交
248 249
  // save cache model
  // cache model can speed up online predict
250
  int32_t SaveCache(int table_id, const std::string& path, const int mode);
251 252 253 254 255
  // save sparse table filtered by user-defined whitelist
  int32_t SaveWithWhitelist(int table_id, const std::string& path,
                            const int mode, const std::string& whitelist_path);
  void LoadWithWhitelist(const uint64_t table_id, const std::string& path,
                         const int mode);
X
xujiaqi01 已提交
256 257 258 259 260 261 262
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id);
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTableByFeasign(const uint64_t src_table_id,
                             const uint64_t dest_table_id,
                             const std::vector<uint64_t>& feasign_list);
  // clear all models, release their memory
263
  void ClearModel();
X
xujiaqi01 已提交
264 265
  // clear one table
  void ClearOneTable(const uint64_t table_id);
X
xujiaqi01 已提交
266
  // shrink sparse table
267
  void ShrinkSparseTable(int table_id);
X
xujiaqi01 已提交
268
  // shrink dense table
269
  void ShrinkDenseTable(int table_id, Scope* scope,
270 271
                        std::vector<std::string> var_list, float decay,
                        int emb_dim);
272

D
dongdaxiang 已提交
273
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
X
xujiaqi01 已提交
274
  // register client to client communication
275
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
276
  // send client to client message
D
dongdaxiang 已提交
277 278
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);
279 280 281 282
  // confirm all the updated params in the current pass
  void Confirm();
  // revert all the updated params in the current pass
  void Revert();
X
xujiaqi01 已提交
283
  // FleetWrapper singleton
284 285 286 287 288 289
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }
290 291 292
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

293 294 295 296
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

297 298
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
299
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
300
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
301
#endif
302

303 304 305
  size_t GetAbsoluteSum(size_t start, size_t end, size_t level,
                        const framework::LoD& lod);

306
 protected:
307
  static bool is_initialized_;
308
  bool scale_sparse_gradient_with_batch_size_;
309
  int32_t sleep_seconds_before_fail_exit_;
310 311 312
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
313 314 315 316
  std::unique_ptr<::ThreadPool> local_pull_pool_{nullptr};
  int pull_local_thread_num_;
  std::unique_ptr<::ThreadPool> pull_to_local_pool_{nullptr};
  int local_table_shard_num_;
317 318 319 320 321
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle