Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b5cfb53c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b5cfb53c
编写于
9月 03, 2020
作者:
Y
yaoxuefeng
提交者:
GitHub
9月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fleet add save with whitelist test=develop (#23376) (#26817)
上级
cf1a8f68
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
124 addition
and
0 deletion
+124
-0
paddle/fluid/framework/fleet/fleet_wrapper.cc
paddle/fluid/framework/fleet/fleet_wrapper.cc
+35
-0
paddle/fluid/framework/fleet/fleet_wrapper.h
paddle/fluid/framework/fleet/fleet_wrapper.h
+5
-0
paddle/fluid/pybind/fleet_wrapper_py.cc
paddle/fluid/pybind/fleet_wrapper_py.cc
+4
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
...e/fluid/incubate/fleet/parameter_server/pslib/__init__.py
+80
-0
未找到文件。
paddle/fluid/framework/fleet/fleet_wrapper.cc
浏览文件 @
b5cfb53c
...
...
@@ -902,6 +902,21 @@ void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
#endif
}
void
FleetWrapper
::
LoadWithWhitelist
(
const
uint64_t
table_id
,
const
std
::
string
&
path
,
const
int
mode
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
load_with_whitelist
(
table_id
,
path
,
std
::
to_string
(
mode
));
ret
.
wait
();
if
(
ret
.
get
()
!=
0
)
{
LOG
(
ERROR
)
<<
"load model of table id: "
<<
table_id
<<
", from path: "
<<
path
<<
" failed"
;
}
#else
VLOG
(
0
)
<<
"FleetWrapper::LoadWhitelist does nothing when no pslib"
;
#endif
}
void
FleetWrapper
::
SaveModel
(
const
std
::
string
&
path
,
const
int
mode
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
save
(
path
,
std
::
to_string
(
mode
));
...
...
@@ -1017,6 +1032,26 @@ int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
#endif
}
int32_t
FleetWrapper
::
SaveWithWhitelist
(
int
table_id
,
const
std
::
string
&
path
,
const
int
mode
,
const
std
::
string
&
whitelist_path
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
save_with_whitelist
(
table_id
,
path
,
std
::
to_string
(
mode
),
whitelist_path
);
ret
.
wait
();
int32_t
feasign_cnt
=
ret
.
get
();
if
(
feasign_cnt
==
-
1
)
{
LOG
(
ERROR
)
<<
"table save cache failed"
;
sleep
(
sleep_seconds_before_fail_exit_
);
exit
(
-
1
);
}
return
feasign_cnt
;
#else
VLOG
(
0
)
<<
"FleetWrapper::SaveCache does nothing when no pslib"
;
return
-
1
;
#endif
}
void
FleetWrapper
::
ShrinkSparseTable
(
int
table_id
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
shrink
(
table_id
);
...
...
paddle/fluid/framework/fleet/fleet_wrapper.h
浏览文件 @
b5cfb53c
...
...
@@ -245,6 +245,11 @@ class FleetWrapper {
// save cache model
// cache model can speed up online predict
int32_t
SaveCache
(
int
table_id
,
const
std
::
string
&
path
,
const
int
mode
);
// save sparse table filtered by user-defined whitelist
int32_t
SaveWithWhitelist
(
int
table_id
,
const
std
::
string
&
path
,
const
int
mode
,
const
std
::
string
&
whitelist_path
);
void
LoadWithWhitelist
(
const
uint64_t
table_id
,
const
std
::
string
&
path
,
const
int
mode
);
// copy feasign key/value from src_table_id to dest_table_id
int32_t
CopyTable
(
const
uint64_t
src_table_id
,
const
uint64_t
dest_table_id
);
// copy feasign key/value from src_table_id to dest_table_id
...
...
paddle/fluid/pybind/fleet_wrapper_py.cc
浏览文件 @
b5cfb53c
...
...
@@ -57,7 +57,11 @@ void BindFleetWrapper(py::module* m) {
.
def
(
"get_cache_threshold"
,
&
framework
::
FleetWrapper
::
GetCacheThreshold
)
.
def
(
"cache_shuffle"
,
&
framework
::
FleetWrapper
::
CacheShuffle
)
.
def
(
"save_cache"
,
&
framework
::
FleetWrapper
::
SaveCache
)
.
def
(
"save_model_with_whitelist"
,
&
framework
::
FleetWrapper
::
SaveWithWhitelist
)
.
def
(
"load_model"
,
&
framework
::
FleetWrapper
::
LoadModel
)
.
def
(
"load_table_with_whitelist"
,
&
framework
::
FleetWrapper
::
LoadWithWhitelist
)
.
def
(
"clear_model"
,
&
framework
::
FleetWrapper
::
ClearModel
)
.
def
(
"clear_one_table"
,
&
framework
::
FleetWrapper
::
ClearOneTable
)
.
def
(
"stop_server"
,
&
framework
::
FleetWrapper
::
StopServer
)
...
...
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
浏览文件 @
b5cfb53c
...
...
@@ -298,6 +298,41 @@ class PSLib(Fleet):
self
.
_fleet_ptr
.
save_model
(
dirname
,
mode
)
self
.
_role_maker
.
_barrier_worker
()
def
save_model_with_whitelist
(
self
,
executor
,
dirname
,
whitelist_path
,
main_program
=
None
,
**
kwargs
):
"""
save whitelist, mode is consistent with fleet.save_persistables,
when using fleet, it will save sparse and dense feature
Args:
executor(Executor): fluid executor
dirname(str): save path. It can be hdfs/afs path or local path
main_program(Program): fluid program, default None
kwargs: use define property, current support following
mode(int): 0 means save all pserver model,
1 means save delta pserver model (save diff),
2 means save xbox base,
3 means save batch model.
Example:
.. code-block:: python
fleet.save_persistables(dirname="/you/path/to/model", mode = 0)
"""
mode
=
kwargs
.
get
(
"mode"
,
0
)
table_id
=
kwargs
.
get
(
"table_id"
,
0
)
self
.
_fleet_ptr
.
client_flush
()
self
.
_role_maker
.
_barrier_worker
()
if
self
.
_role_maker
.
is_first_worker
():
self
.
_fleet_ptr
.
save_model_with_whitelist
(
table_id
,
dirname
,
mode
,
whitelist_path
)
self
.
_role_maker
.
_barrier_worker
()
def
save_cache_model
(
self
,
executor
,
dirname
,
main_program
=
None
,
**
kwargs
):
"""
save sparse cache table,
...
...
@@ -449,6 +484,51 @@ class PSLib(Fleet):
self
.
_fleet_ptr
.
clear_model
()
self
.
_role_maker
.
_barrier_worker
()
def
load_pslib_whitelist
(
self
,
table_id
,
model_path
,
**
kwargs
):
"""
load pslib model for one table with whitelist
Args:
table_id(int): load table id
model_path(str): load model path, can be local or hdfs/afs path
kwargs(dict): user defined params, currently support following:
only for load pslib model for one table:
mode(int): load model mode. 0 is for load whole model, 1 is
for load delta model (load diff), default is 0.
only for load params from paddle model:
scope(Scope): Scope object
model_proto_file(str): path of program desc proto binary
file, can be local or hdfs/afs file
var_names(list): var name list
load_combine(bool): load from a file or split param files
default False.
Examples:
.. code-block:: python
# load pslib model for one table
fleet.load_one_table(0, "hdfs:/my_fleet_model/20190714/0/")
fleet.load_one_table(1, "hdfs:/xx/xxx", mode = 0)
# load params from paddle model
fleet.load_one_table(2, "hdfs:/my_paddle_model/",
scope = my_scope,
model_proto_file = "./my_program.bin",
load_combine = False)
# below is how to save proto binary file
with open("my_program.bin", "wb") as fout:
my_program = fluid.default_main_program()
fout.write(my_program.desc.serialize_to_string())
"""
self
.
_role_maker
.
_barrier_worker
()
mode
=
kwargs
.
get
(
"mode"
,
0
)
if
self
.
_role_maker
.
is_first_worker
():
self
.
_fleet_ptr
.
load_table_with_whitelist
(
table_id
,
model_path
,
mode
)
self
.
_role_maker
.
_barrier_worker
()
def
load_one_table
(
self
,
table_id
,
model_path
,
**
kwargs
):
"""
load pslib model for one table or load params from paddle model
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录