device_worker.h 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21 22
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
X
xujiaqi01 已提交
23 24 25 26
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
27 28 29 30 31 32 33 34 35 36 37
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
38
#include "paddle/fluid/platform/port.h"
39 40
#include "paddle/fluid/platform/timer.h"

41
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
42 43 44
#include "paddle/fluid/platform/nccl_helper.h"
#endif

45 46 47
namespace paddle {
namespace framework {

T
Thunderbrook 已提交
48
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
49 50 51
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

52 53
class FleetWrapper;

H
hutuxian 已提交
54 55 56 57
#define SEC_LOG                                                              \
  VLOG(3) << "[s" << section_id_ << "p" << pipeline_id_ << "t" << thread_id_ \
          << "]: "

58 59 60 61 62 63
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
  int Start();
  void Stop();
64
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
65 66 67
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
68
  void PullDense(bool force_update = false);
69 70
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
71 72 73 74 75 76 77
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

78 79
  static std::shared_ptr<PullDenseWorker> s_instance_;

80
 private:
81
  PullDenseWorker() : root_scope_(NULL) {}
82 83 84 85 86 87
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
88
  DownpourWorkerParameter dwp_param_;
89 90 91
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
92 93 94 95 96
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
97 98 99 100 101 102 103 104 105 106 107 108 109 110

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
111
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
112 113 114 115 116
};

// should incorporate different type of device
class DeviceWorker {
 public:
117 118 119 120
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
121 122 123 124
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
125
  virtual void PrintFetchVars() = 0;
126 127 128 129 130
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
131
  virtual void SetDataFeed(DataFeed* data_feed);
132 133
  virtual void SetNeedDump(bool need_dump_field) {}
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {}
134 135 136
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
137 138 139
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
140
  virtual Scope* GetThreadScope() { return thread_scope_; }
141 142

 protected:
J
jiaqi 已提交
143
  Scope* root_scope_ = nullptr;
144
  Scope* thread_scope_;
145
  paddle::platform::Place place_;
J
jiaqi 已提交
146
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
147 148
  int64_t batch_num_;
  FetchConfig fetch_config_;
149
  bool use_cvm_;
150
  bool no_cvm_;
151
  bool scale_sparse_gradient_with_batch_size_;
T
Thunderbrook 已提交
152
  std::vector<std::string> all_param_;
153 154 155 156 157 158 159 160 161
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
162
  virtual void PrintFetchVars() {}
163 164 165 166 167 168 169 170 171
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
172 173 174 175 176 177
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
178
  virtual void Initialize(const TrainerDesc& desc);
179 180
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
181 182
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
D
dongdaxiang 已提交
183
  virtual void PrintFetchVars();
184 185
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
186 187
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
188 189 190 191

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
192 193
  virtual void DumpParam(const int batch_id);

194 195
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
196
  bool thread_barrier_;
197
  // Scope* thread_scope_;
198 199
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
200
  std::map<std::string, int> stat_var_name_map_;
201 202 203 204 205 206
  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
207 208 209 210 211 212
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
213
  virtual void Initialize(const TrainerDesc& desc);
214
  virtual void TrainFiles();
215
  virtual void TrainFilesWithProfiler();
216 217
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
218 219 220 221 222 223 224

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
225
  void AdjustInsWeight();
X
xujiaqi01 已提交
226 227 228
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
229 230
  virtual void DumpParam(const int batch_id);

231
  DownpourWorkerParameter param_;
232 233 234 235
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
236 237
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
238
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
239 240 241 242
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
243 244 245 246 247 248 249 250 251
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
252 253
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
254 255 256 257 258 259
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
260 261
  // skipped ops
  std::vector<std::string> skip_ops_;
262 263 264 265 266 267 268 269 270 271 272
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
273 274

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
275 276

  std::vector<float> nid_show_;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
297 298
};

299
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
using ScopeQueue = operators::reader::BlockingQueue<Scope*>;

class SyncFunctor {
 public:
  SyncFunctor(int rank_id, int rank_num, int sync_steps);
  virtual ~SyncFunctor() {}

  void SetSyncParam(const std::vector<std::string>& sync_param) {
    sync_param_ = &sync_param;
  }
  void SetNcclCtxMap(platform::NCCLContextMap* nccl_ctx_map) {
    nccl_ctx_map_ = nccl_ctx_map;
  }

  int operator()(Scope* scope);
  static std::vector<Scope*> pipeline_scopes_;
  static uint64_t sync_flag_;

 protected:
  const int rank_id_;
  const int rank_num_;
  const std::vector<std::string>* sync_param_ = nullptr;
  platform::NCCLContextMap* nccl_ctx_map_ = nullptr;

  uint64_t sync_signal_;
  const int sync_steps_;
  int counter_;

  void Synchronize();
};

class SectionWorker : public DeviceWorker {
 public:
  SectionWorker() {}
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
  void SetDeviceIndex(int tid) override { pipeline_id_ = tid; }
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
  void SetVarNames(const std::vector<std::string>& in_var_names,
                   const std::vector<std::string>& out_var_names) {
    in_var_names_ = &in_var_names;
    out_var_names_ = &out_var_names;
  }
  void SetScopeQueue(ScopeQueue* in_scope_queue, ScopeQueue* out_scope_queue) {
    in_scope_queue_ = in_scope_queue;
    out_scope_queue_ = out_scope_queue;
  }
  void SetCountMutex(std::mutex* mutex) { worker_count_mutex_ = mutex; }
  void SetWorkerCount(int* worker_count) { worker_count_ = worker_count; }
  void SetSectionNum(int section_num) { section_num_ = section_num; }
  void SetPipelineNum(int pipeline_num) { pipeline_num_ = pipeline_num; }
  void SetNextSectionPlace(const paddle::platform::Place& place) {
    next_section_place_ = place;
  }
  SyncFunctor* sync_func_ = nullptr;
  void SetSyncFunctor(SyncFunctor* sync_func) { sync_func_ = sync_func; }

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int pipeline_id_;
  int section_num_;
  int pipeline_num_;
  int thread_id_;
  // This worker will consume scope from in_scope_queue_
  // and produce scope to out_scope_queue_
  ScopeQueue* in_scope_queue_ = nullptr;
  ScopeQueue* out_scope_queue_ = nullptr;
  const std::vector<std::string>* in_var_names_ = nullptr;
  const std::vector<std::string>* out_var_names_ = nullptr;
  std::mutex* worker_count_mutex_ = nullptr;
  int* worker_count_ = nullptr;
  paddle::platform::Place next_section_place_;

  std::vector<std::unique_ptr<OperatorBase>> ops_;

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
394 395
}  // namespace framework
}  // namespace paddle