fleet_wrapper.h 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <ThreadPool.h>
23
#include <atomic>
X
xujiaqi01 已提交
24
#include <ctime>
D
dongdaxiang 已提交
25
#include <map>
D
dongdaxiang 已提交
26
#include <random>
27
#include <string>
28
#include <unordered_map>
29
#include <vector>
30

D
dongdaxiang 已提交
31
#include "paddle/fluid/framework/program_desc.h"
32
#include "paddle/fluid/framework/scope.h"
33
#include "paddle/fluid/framework/tensor.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN

namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
53 54
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
55 56 57 58 59 60 61
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
62 63 64 65
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pslib core dump
    sleep_seconds_before_fail_exit_ = 300;
66 67 68 69 70 71
    // pslib request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pslib connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pslib request max retry
    client2client_max_retry_ = 3;
72
    pull_local_thread_num_ = 25;
73
  }
74

X
xujiaqi01 已提交
75
  // set client to client communication config
76 77 78
  void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
                              int max_retry);

79 80 81
  void SetPullLocalThreadNum(int thread_num) {
    pull_local_thread_num_ = thread_num;
  }
82

X
xujiaqi01 已提交
83
  // Pull sparse variables from server in sync mode
84
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
85 86 87 88 89
  // Param<out>: fea_values
  void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
90 91
                          int fea_dim,
                          const std::vector<std::string>& var_emb_names);
92 93 94 95

  // Pull sparse variables from server in async mode
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim
  // Param<out>: fea_values std::future
96 97 98 99 100
  std::future<int32_t> PullSparseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<uint64_t>* fea_keys,
      std::vector<std::vector<float>>* fea_values, int fea_dim);
101 102 103 104 105 106 107 108

  // Pull sparse variables from server in sync mode
  // pull immediately to tensors
  void PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                              uint64_t padding_id, platform::Place place,
                              std::vector<const LoDTensor*>* inputs,  // NOLINT
                              std::vector<LoDTensor*>* outputs);      // NOLINT

X
xujiaqi01 已提交
109
  // pull dense variables from server in sync mod
110 111
  // Param<in>: scope, table_id, var_names
  // Param<out>: void
112 113 114
  void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
115 116 117
  // pull dense variables from server in async mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: pull_dense_status
118 119 120 121 122
  void PullDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* pull_dense_status);

X
xujiaqi01 已提交
123
  // push dense parameters(not gradients) to server in sync mode
D
dongdaxiang 已提交
124
  void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
D
dongdaxiang 已提交
125
                          const std::vector<std::string>& var_names);
126

127
  // Push dense variables to server in async mode
X
xujiaqi01 已提交
128
  // Param<in>: scope, table_id, var_names, scale_datanorm, batch_size
129 130 131 132
  // Param<out>: push_sparse_status
  void PushDenseVarsAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<std::string>& var_names,
133 134
      std::vector<::std::future<int32_t>>* push_sparse_status,
      float scale_datanorm, int batch_size);
135

X
xujiaqi01 已提交
136
  // push dense variables to server in sync mode
D
dongdaxiang 已提交
137 138 139
  void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
140
  // Push sparse variables with labels to server in async mode
141 142 143 144 145 146 147 148 149 150 151 152
  std::vector<std::unordered_map<uint64_t, std::vector<float>>> local_tables_;
  void PullSparseToLocal(const uint64_t table_id, int fea_value_dim);
  void PullSparseVarsFromLocal(const Scope& scope, const uint64_t table_id,
                               const std::vector<std::string>& var_names,
                               std::vector<uint64_t>* fea_keys,
                               std::vector<std::vector<float>>* fea_values,
                               int fea_value_dim);
  void ClearLocalTable();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
  GetLocalTable() {
    return local_tables_;
  }
153

154
  // This is specially designed for click/show stats in server
X
xujiaqi01 已提交
155 156
  // Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
  //            sparse_grad_names, batch_size, use_cvm, dump_slot
157 158 159 160 161 162 163 164
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
      const Scope& scope, const uint64_t table_id,
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names, const int emb_dim,
      std::vector<std::vector<float>>* push_values,
165
      std::vector<::std::future<int32_t>>* push_sparse_status,
166
      const int batch_size, const bool use_cvm, const bool dump_slot,
167
      std::vector<uint64_t>* sparse_push_keys, const bool no_cvm);
168

169 170 171 172 173 174 175 176 177
  // Push sparse variables to server in async mode
  void PushSparseFromTensorWithLabelAsync(
      const Scope& scope, const uint64_t table_id, int fea_dim,
      uint64_t padding_id, bool scale_sparse, const std::string& accesor,
      const std::string& click_name, platform::Place place,
      const std::vector<std::string>& input_names,
      std::vector<const LoDTensor*>* inputs,    // NOLINT
      std::vector<const LoDTensor*>* outputs);  // NOLINT

178 179 180 181 182 183 184 185 186 187 188 189 190
  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

X
xujiaqi01 已提交
191
  // init server
192
  void InitServer(const std::string& dist_desc, int index);
X
xujiaqi01 已提交
193
  // init trainer
194 195 196
  void InitWorker(const std::string& dist_desc,
                  const std::vector<uint64_t>& host_sign_list, int node_num,
                  int index);
X
xujiaqi01 已提交
197
  // stop server
198
  void StopServer();
199 200
  // finalize worker to make worker can be stop
  void FinalizeWorker();
X
xujiaqi01 已提交
201
  // run server
202
  uint64_t RunServer();
203 204
  // run server with ip port
  uint64_t RunServer(const std::string& ip, uint32_t port);
X
xujiaqi01 已提交
205
  // gather server ip
206
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
207
  // gather client ip
X
xjqbest 已提交
208
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
209
  // get client info
X
xjqbest 已提交
210
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
211
  // create client to client connection
X
xjqbest 已提交
212
  void CreateClient2ClientConnection();
213 214
  // flush all push requests
  void ClientFlush();
215 216 217 218
  // load from paddle model
  void LoadFromPaddleModel(Scope& scope, const uint64_t table_id,  // NOLINT
                           std::vector<std::string> var_list,
                           std::string model_path, std::string model_proto_file,
219
                           std::vector<std::string> table_var_list,
220
                           bool load_combine);
221 222

  void PrintTableStat(const uint64_t table_id);
223
  // mode = 0, load all feature
X
xujiaqi01 已提交
224
  // mode = 1, load delta feature, which means load diff
225
  void LoadModel(const std::string& path, const int mode);
226
  // mode = 0, load all feature
X
xujiaqi01 已提交
227
  // mode = 1, load delta feature, which means load diff
228 229
  void LoadModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
230 231 232
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);
233 234
  void SaveMultiTableOnePath(const std::vector<int>& table_ids,
                             const std::string& path, const int mode);
X
xujiaqi01 已提交
235 236 237 238 239 240 241
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModelOneTable(const uint64_t table_id, const std::string& path,
                         const int mode);
  // save model with prefix
  void SaveModelOneTablePrefix(const uint64_t table_id, const std::string& path,
                               const int mode, const std::string& prefix);
X
xujiaqi01 已提交
242
  // get save cache threshold
243
  double GetCacheThreshold(int table_id);
X
xujiaqi01 已提交
244
  // shuffle cache model between servers
245 246
  void CacheShuffle(int table_id, const std::string& path, const int mode,
                    const double cache_threshold);
X
xujiaqi01 已提交
247 248
  // save cache model
  // cache model can speed up online predict
249
  int32_t SaveCache(int table_id, const std::string& path, const int mode);
250 251 252 253 254
  // save sparse table filtered by user-defined whitelist
  int32_t SaveWithWhitelist(int table_id, const std::string& path,
                            const int mode, const std::string& whitelist_path);
  void LoadWithWhitelist(const uint64_t table_id, const std::string& path,
                         const int mode);
X
xujiaqi01 已提交
255 256 257 258 259 260 261
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id);
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTableByFeasign(const uint64_t src_table_id,
                             const uint64_t dest_table_id,
                             const std::vector<uint64_t>& feasign_list);
  // clear all models, release their memory
262
  void ClearModel();
X
xujiaqi01 已提交
263 264
  // clear one table
  void ClearOneTable(const uint64_t table_id);
X
xujiaqi01 已提交
265
  // shrink sparse table
266
  void ShrinkSparseTable(int table_id);
X
xujiaqi01 已提交
267
  // shrink dense table
268
  void ShrinkDenseTable(int table_id, Scope* scope,
269 270
                        std::vector<std::string> var_list, float decay,
                        int emb_dim);
271

D
dongdaxiang 已提交
272
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
X
xujiaqi01 已提交
273
  // register client to client communication
274
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
275
  // send client to client message
D
dongdaxiang 已提交
276 277
  std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
                                             const std::string& msg);
278 279 280 281
  // confirm all the updated params in the current pass
  void Confirm();
  // revert all the updated params in the current pass
  void Revert();
X
xujiaqi01 已提交
282
  // FleetWrapper singleton
283 284 285 286 287 288
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }
289 290 291
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

292 293 294 295
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

296 297
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
298
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
299
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
300
#endif
301

302 303 304
  size_t GetAbsoluteSum(size_t start, size_t end, size_t level,
                        const framework::LoD& lod);

305
 protected:
306
  static bool is_initialized_;
307
  bool scale_sparse_gradient_with_batch_size_;
308
  int32_t sleep_seconds_before_fail_exit_;
309 310 311
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
312 313 314 315
  std::unique_ptr<::ThreadPool> local_pull_pool_{nullptr};
  int pull_local_thread_num_;
  std::unique_ptr<::ThreadPool> pull_to_local_pool_{nullptr};
  int local_table_shard_num_;
316 317 318 319 320
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle