elementwise.h 81.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/pten/kernels/copy_kernel.h"
18
#include "paddle/pten/kernels/funcs/common_shape.h"
19 20
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
21
#include "paddle/pten/kernels/gpu/reduce.h"
22

23 24 25 26 27 28 29 30
#ifdef __HIPCC__
constexpr int ELEMWISE_MAX_BLOCK_DIM = 256;
#else
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
#endif
#define BLOCK_X 32
#define BLOCK_Y 32

31 32 33 34 35 36 37
#define GetDivMod(dividend, divisor, div, mod) \
  do {                                         \
    const auto dividend_copy = dividend;       \
    *div = dividend_copy / divisor;            \
    *mod = dividend_copy % divisor;            \
  } while (0)

38
namespace pten {
39
// FORWARD CODE
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct DimensionsTransform {
  using DimVector = std::vector<int64_t>;
  typedef void (*MergeFunctor)(
      bool &, std::vector<DimVector> &, DimVector &, int, int);
  int64_t dim_size;
  DimVector out_dims;
  std::vector<DimVector> in_dims;

 private:
  // To compensate the lackage of input_tensors` dimension with input variable
  // 'axis'
  void InputDimensionsExtend(int N, int axis) {
    for (auto &in_dim : in_dims) {
      int64_t in_idx = 0;
      if (in_dim.size() < dim_size) {
        DimVector tmp_dim(dim_size, 1);
        do {
          if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
            tmp_dim[axis] = in_dim[in_idx];
            in_idx++;
            axis++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                axis + 1,
                out_dims[axis],
                in_dim[in_idx]));
          }
        } while (in_idx < in_dim.size());
        in_dim.resize(dim_size);
        std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
      } else {
        do {
          if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
            in_idx++;
          } else {
            PADDLE_THROW(paddle::platform::errors::InvalidArgument(
                "The %d-th dimension of input tensor is expected to be equal "
                "with the %d-th dimension of output tensor %d or 1, but "
                "recieved %d.",
                in_idx + 1,
                in_idx + 1,
                out_dims[in_idx],
                in_dim[in_idx]));
          }
        } while (in_idx < dim_size);
      }
      std::reverse(in_dim.begin(), in_dim.end());
    }
    std::reverse(out_dims.begin(), out_dims.end());
  }

  template <typename MergeFunctor>
  __inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
    auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
      (*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
                                          vec->begin() + m_idx,
                                          1,
                                          std::multiplies<int64_t>());
      vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
    };

    int64_t i = 0;
    while (i < dim_size) {
      int cnt = 0;
      int low_idx = i;
      bool equal = true;
      do {
        merge_func(equal, in_dims, out_dims, i, N);
        if (equal) {
          i++;
          cnt++;
        } else {
          break;
        }
      } while (i < dim_size);

      if (cnt > 1) {
        for (auto &in_dim : in_dims) {
          VectorReorganise(&in_dim, low_idx, i);
        }
        VectorReorganise(&out_dims, low_idx, i);
        dim_size -= --cnt;
        i -= cnt;
      } else if (cnt < 1) {
        i++;
      }
    }
  }

 public:
  explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
135
                               const pten::framework::DDim &dims,
136
                               int axis) {
137
    const int N = max(static_cast<int>(ins.size()), 2);
138
    dim_size = dims.size();
139
    out_dims = pten::framework::vectorize<int64_t>(dims);
140
    in_dims.resize(N);
141 142 143 144 145 146 147 148 149
    if (ins.size() == 1) {
      // when ins.size() = 1, broadcast input to output
      in_dims[0] = pten::framework::vectorize<int64_t>(ins[0]->dims());
      in_dims[1] = out_dims;
      // Add out_dims to in_dims to avoid errors in dims merging
    } else {
      for (int j = 0; j < N; ++j) {
        in_dims[j] = pten::framework::vectorize<int64_t>(ins[j]->dims());
      }
150 151 152 153 154 155 156 157 158
    }
    InputDimensionsExtend(N, axis);

    auto merge_sequential_dims = [](bool &equal,
                                    std::vector<DimVector> &in_dims,
                                    DimVector &out,
                                    int i,
                                    int num) {
      for (int j = 1; j < num; ++j) {
159
        equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
160 161 162 163 164 165 166 167 168 169
      }
    };
    auto merge_sequential_one_dims = [](bool &equal,
                                        std::vector<DimVector> &in_dims,
                                        DimVector &out,
                                        int i,
                                        int num) {
      equal = in_dims[0][i] == 1;
      if (equal) {
        for (int j = 1; j < num; ++j) {
170
          equal &= in_dims[j][i] == out[i];
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        }
      }
    };
    // To Merge the dimensions of input_tensors while the consequtive
    // equal-dimensions appears.
    MergeFunctor merge_ptr = merge_sequential_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);

    int min_idx = 0;
    int min_val = std::accumulate(
        in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
    for (int j = 1; j < N; ++j) {
      int temp = std::accumulate(
          in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
      min_val = min_val > temp ? temp : min_val;
      min_idx = min_val == temp ? j : min_idx;
    }
    std::swap(in_dims[0], in_dims[min_idx]);

    // To Merge the dimension of input_tensors while the consequtive
    // 1-value-dimensions appears.
    merge_ptr = merge_sequential_one_dims;
    MergeDimensions<MergeFunctor>(merge_ptr, N);
    std::swap(in_dims[min_idx], in_dims[0]);
  }
};

template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
    T *dst,
201
    const _ptr_ T *src,
202 203 204 205
    uint32_t block_offset,
    const kps::details::BroadcastConfig<Rank> &config,
    int numel,
    int num,
206
    int need_broadcast) {
207 208 209 210 211 212 213 214 215 216 217 218 219 220
  // numel : whole num of output
  // num: how many data will be deal with in this time
  if (need_broadcast) {
    kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
        dst, src, block_offset, config, numel);
  } else {
    kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
  }
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
221
          int NumOuts,
222 223 224
          int VecSize,
          int Rank,
          bool IsBoundary = false>
225
__device__ void ElementwiseBroadcastKernelImpl(
226 227 228
    const pten::framework::Array<const _ptr_ InT *__restrict__, Arity> &ins,
    pten::framework::Array<_ptr_ OutT *, NumOuts> outs,
    const pten::framework::Array<int, Arity> &use_broadcast,
229
    uint32_t numel,
230
    const pten::framework::Array<kps::details::BroadcastConfig<Rank>, Arity>
231 232
        &configs,
    int num,
233
    int block_offset,
234 235
    Functor func) {
  InT args[Arity][VecSize];
236
  ConditionalT<OutT, NumOuts> result[VecSize];
237 238 239 240 241 242 243 244 245 246 247 248

#pragma unroll
  for (int i = 0; i < Arity; i++) {
    kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
    LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
                                             ins[i],
                                             block_offset,
                                             configs[i],
                                             numel,
                                             num,
                                             use_broadcast[i]);
  }
249
  constexpr bool kCallElementwiseAny =
250
      paddle::platform::FunctionTraits<Functor>::has_pointer_args;
251 252 253 254 255 256 257 258 259
  pten::funcs::ElementwisePrimitiveCaller<InT,
                                          ConditionalT<OutT, NumOuts>,
                                          VecSize,
                                          Functor,
                                          Arity,
                                          kCallElementwiseAny>()(
      func, args, result);

  pten::funcs::ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
260
      outs, result, block_offset, num);
261 262 263 264 265 266
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
267
          int NumOuts,
268 269
          int VecSize,
          int Rank>
270
__global__ void ElementwiseBroadcastKernel(
271 272 273
    pten::framework::Array<const _ptr_ InT *__restrict__, Arity> ins,
    pten::framework::Array<_ptr_ OutT *, NumOuts> outs,
    pten::framework::Array<int, Arity> use_broadcast,
274
    uint32_t numel,
275
    pten::framework::Array<kps::details::BroadcastConfig<Rank>, Arity> configs,
276
    int main_offset,
277 278
    int tail_tid,
    Functor func) {
279 280
  int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
  int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
281

282 283 284 285 286 287
#ifdef PADDLE_WITH_XPU2
  for (; block_offset < main_offset; block_offset += stride) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
288
                                   NumOuts,
289 290 291
                                   VecSize,
                                   Rank,
                                   false>(ins,
292
                                          outs,
293 294 295 296 297 298 299
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  }
300 301
  int num = numel - block_offset;
  if (num > 0) {
302 303 304 305
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
306
                                   NumOuts,
307 308 309
                                   VecSize,
                                   Rank,
                                   true>(
310
        ins, outs, use_broadcast, numel, configs, num, block_offset, func);
311
  }
312 313 314 315 316 317
#else
  if (block_offset < main_offset) {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
318
                                   NumOuts,
319 320 321
                                   VecSize,
                                   Rank,
                                   false>(ins,
322
                                          outs,
323 324 325 326 327 328 329 330 331 332 333
                                          use_broadcast,
                                          numel,
                                          configs,
                                          BLOCK_NUM_X * VecSize,
                                          block_offset,
                                          func);
  } else {
    ElementwiseBroadcastKernelImpl<InT,
                                   OutT,
                                   Functor,
                                   Arity,
334
                                   NumOuts,
335 336 337
                                   VecSize,
                                   Rank,
                                   true>(
338
        ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
339 340
  }
#endif
341 342 343 344 345 346
}

template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
347
          int NumOuts,
348 349
          int VecSize,
          int Rank>
350
void LaunchKernel(const KPDevice &ctx,
351
                  const std::vector<const DenseTensor *> &ins,
352
                  std::vector<DenseTensor *> *outs,
353 354
                  Functor func,
                  DimensionsTransform merge_dims) {
355
  int numel = (*outs)[0]->numel();
356 357 358 359
  pten::framework::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
  pten::framework::Array<int, Arity> use_broadcast;
  pten::framework::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
  pten::framework::Array<_ptr_ OutT *, NumOuts> outs_data;
360 361

  for (int i = 0; i < NumOuts; ++i) {
362
    outs_data[i] = ctx.Alloc<OutT>((*outs)[i]);
363
  }
364 365 366

  for (int i = 0; i < Arity; i++) {
    use_broadcast[i] = (ins[i]->numel() != numel);
367
    ins_data[i] = (_ptr_ InT *)(ins[i]->data<InT>());
368 369 370 371 372 373 374 375
    if (use_broadcast[i]) {
      // get the broadcast config,
      // if data shape is[m, n], then you should set data_dim = {n, m}
      // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
      configs[i] = kps::details::BroadcastConfig<Rank>(
          merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
    }
  }
376

377
#ifdef PADDLE_WITH_XPU2
378 379 380 381 382
  const int threads = 64;
  const int blocks = 8;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.x_context()->xpu_stream;
383 384 385 386
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
387
                             NumOuts,
388 389
                             VecSize,
                             Rank><<<blocks, threads, stream>>>(ins_data,
390
                                                                outs_data,
391 392 393 394 395 396 397
                                                                use_broadcast,
                                                                numel,
                                                                configs,
                                                                main_offset,
                                                                tail_tid,
                                                                func);
#else
398 399 400 401 402
  const int threads = 256;
  int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;
  int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
  int tail_tid = numel % (VecSize * threads);
  auto stream = ctx.stream();
403 404 405 406
  ElementwiseBroadcastKernel<InT,
                             OutT,
                             Functor,
                             Arity,
407
                             NumOuts,
408 409 410
                             VecSize,
                             Rank><<<blocks, threads, 0, stream>>>(
      ins_data,
411
      outs_data,
412 413 414 415 416 417 418
      use_broadcast,
      numel,
      configs,
      main_offset,
      tail_tid,
      func);
#endif
419 420
}

421 422 423 424 425 426
template <typename InT,
          typename OutT,
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize>
427
void LaunchBroadcastKernelForDifferentVecSize(
428
    const KPDevice &ctx,
429
    const std::vector<const DenseTensor *> &ins,
430
    std::vector<DenseTensor *> *outs,
431 432
    int axis,
    Functor func) {
433
  const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
434

435 436 437 438
#define CALL_BROADCAST_FOR_DIM_SIZE(rank)                            \
  case rank: {                                                       \
    LaunchKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
        ctx, ins, outs, func, merge_dims);                           \
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  } break;

  switch (merge_dims.dim_size) {
    CALL_BROADCAST_FOR_DIM_SIZE(1);
    CALL_BROADCAST_FOR_DIM_SIZE(2);
    CALL_BROADCAST_FOR_DIM_SIZE(3);
    CALL_BROADCAST_FOR_DIM_SIZE(4);
    CALL_BROADCAST_FOR_DIM_SIZE(5);
    CALL_BROADCAST_FOR_DIM_SIZE(6);
    CALL_BROADCAST_FOR_DIM_SIZE(7);
    CALL_BROADCAST_FOR_DIM_SIZE(8);
    default: {
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "The maximum dimension of input tensor is expected to be less than "
          "%d, but recieved %d.\n",
          merge_dims.dim_size,
455
          pten::framework::DDim::kMaxRank));
456 457 458 459 460
    }
  }
#undef CALL_BROADCAST_FOR_DIM_SIZE
}

461 462 463 464 465
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
466
void LaunchBroadcastElementwiseCudaKernel(
467
    const KPDevice &ctx,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    const std::vector<const DenseTensor *> &ins,
    std::vector<DenseTensor *> *outs,
    int axis,
    Functor func) {
  using Traits = paddle::platform::FunctionTraits<Functor>;
  const int kArity =
      Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
                    paddle::platform::errors::InvalidArgument(
                        "The number of inputs is expected to be equal to the "
                        "arity of functor. But recieved: the number of inputs "
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
483
  PADDLE_ENFORCE_LE(kArity,
L
limingshu 已提交
484
                    3,
485
                    paddle::platform::errors::InvalidArgument(
486 487
                        "Currently only broadcast of ternary is supported "
                        "and verified, but received %d.",
488
                        kArity));
489 490 491 492 493 494 495
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
                    paddle::platform::errors::InvalidArgument(
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));
496
  int in_vec_size = 4;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  int out_vec_size = 4;
  if (NumOuts > 1) {
    for (int i = 0; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
          paddle::platform::errors::InvalidArgument(
              "The shape of each output tensor shall be identical yet, but "
              "%dth output tensor`s shape is not.",
              i));
      out_vec_size = std::min(
          paddle::platform::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()),
          out_vec_size);
    }
  } else {
    out_vec_size =
        paddle::platform::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
  }

516 517
  for (auto *in : ins) {
    auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
518 519 520
    in_vec_size = in->dims() == (*outs)[0]->dims()
                      ? std::min(temp_size, in_vec_size)
                      : in_vec_size;
521 522 523 524 525
  }
  int vec_size = std::min(out_vec_size, in_vec_size);

  switch (vec_size) {
    case 4: {
526 527 528 529 530 531
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               4>(ctx, ins, outs, axis, func);
532 533 534
      break;
    }
    case 2: {
535 536 537 538 539 540
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               2>(ctx, ins, outs, axis, func);
541 542 543
      break;
    }
    case 1: {
544 545 546 547 548 549
      LaunchBroadcastKernelForDifferentVecSize<InT,
                                               OutT,
                                               Functor,
                                               kArity,
                                               NumOuts,
                                               1>(ctx, ins, outs, axis, func);
550 551 552 553 554 555 556 557 558 559
      break;
    }
    default: {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

560 561 562 563 564
template <ElementwiseType ET,
          typename InT,
          typename OutT,
          typename Functor,
          int NumOuts = 1>
565 566 567 568 569
void LaunchElementwiseCudaKernel(const KPDevice &ctx,
                                 const std::vector<const DenseTensor *> &ins,
                                 std::vector<DenseTensor *> *outs,
                                 int axis,
                                 Functor func) {
570 571 572 573 574 575 576
  std::vector<int> dims_size;
  bool no_broadcast_flag = true;
  for (auto *in : ins) {
    no_broadcast_flag &= ins[0]->dims() == in->dims();
    dims_size.emplace_back(in->dims().size());
  }
  if (no_broadcast_flag) {
577 578 579
    pten::funcs::
        LaunchSameDimsElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
            ctx, ins, outs, func);
580 581 582 583 584
  } else {
    axis = axis == -1
               ? *std::max_element(dims_size.begin(), dims_size.end()) -
                     *std::min_element(dims_size.begin(), dims_size.end())
               : axis;
585
    pten::LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
586
        ctx, ins, outs, axis, func);
587 588 589
  }
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const GPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  std::vector<const DenseTensor *> ins = {&x, &y};
  std::vector<DenseTensor *> outs = {z};
  z->mutable_data<OutType>(dev_ctx.GetPlace());
  pten::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, OutType>(
      dev_ctx, ins, &outs, axis, func);
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
// BACKWARD CODE

// Suppose only has contiguous dims
static inline bool CheckContiguousDims(const std::vector<int> &broadcast_pos) {
  for (int i = 1; i < broadcast_pos.size(); ++i) {
    if (broadcast_pos[i] != broadcast_pos[i - 1] + 1) {
      return false;
    }
  }
  return true;
}

inline void ComputeBroadcastTranspositionArray(const int *x_one_indexs,
                                               int *x_trans_indexs,
                                               const int max_dim,
                                               const int x_one_size) {
  int diff = max_dim - x_one_size;
  std::copy_n(x_one_indexs, x_one_size, x_trans_indexs + diff);
  int p = 0;
  int q = diff;
  for (int i = 0; i < max_dim; ++i) {
    if (q < max_dim && i == x_trans_indexs[q]) {
      ++q;
    } else {
      x_trans_indexs[p++] = i;
    }
  }
}

// Check input can be split into 2 parts
static inline bool SplitDims(const std::vector<int> &y_broadcast_pos,
                             int max_dim) {
  bool can_split_dim2 = true;
  // must at start or end.
  if (y_broadcast_pos[0] != 0 &&
      y_broadcast_pos[y_broadcast_pos.size() - 1] != max_dim - 1) {
    can_split_dim2 = false;
  } else {
    for (int i = 1; i < y_broadcast_pos.size(); ++i) {
      // dim must be continue
      if (y_broadcast_pos[i] != y_broadcast_pos[i - 1] + 1) {
        can_split_dim2 = false;
        break;
      }
    }
  }
  return can_split_dim2;
}

inline void ComputeBroadcastKernelSize(int *x_dims_array,
                                       int *out_dims_array,
                                       int *x_blocks,
                                       int *x_threads,
                                       int max_dim) {
  *x_blocks = 1;
  *x_threads = 1;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] == out_dims_array[i]) {
      *x_blocks *= x_dims_array[i];
    } else {
      *x_threads *= out_dims_array[i];
    }
  }
}

template <typename T, typename OP, typename Tout = T>
static __global__ void FastCommonGradBroadcastOneCUDAKernel(const T *x,
                                                            const T *y,
                                                            const Tout *out,
                                                            const Tout *dout,
                                                            int pre,
                                                            int n,
                                                            int post,
                                                            int y_pre,
                                                            int y_n,
                                                            int y_post,
                                                            bool is_xsize,
                                                            OP op,
                                                            T *dd) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize) {
    // do reduce for x
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      // Get y pre rows id with x post and y_pre.
      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int y_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  } else {
    // do reduce for y
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + b_j;
      int out_offset = b_i * n * post + i * post + b_j;

      int b_yi = bid / (post * y_pre);
      int b_yj = bid % y_post;
      int x_offset = b_yi * y_n + i * y_post + b_yj;

      if (dd) {
        val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
      }
    }
    if (dd) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dd[bid] = val;
      }
    }
  }
}

template <typename T, typename DY_OP, typename DX_OP, typename Tout = T>
static __global__ void FastCommonGradBroadcastAllCUDAKernel(
    const T *x,
    const T *y,
    const Tout *out,
    const Tout *dout,
    int pre,
    int n,
    int post,
    bool is_xsize_larger,
    DX_OP dx_op,
    DY_OP dy_op,
    T *dx,
    T *dy) {
  int tid = threadIdx.x;
  int bid = blockIdx.x;

  T val(0);
  if (is_xsize_larger) {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int x_offset = b_i * n * post + i * post + b_j;
      int y_offset = b_i * post + b_j;
      if (dx) {
        dx[x_offset] =
            dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
      }
    }
    if (dy) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dy[bid] = val;
      }
    }
  } else {
    for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
      int b_i = bid / post;
      int b_j = bid % post;
      int y_offset = b_i * n * post + i * post + b_j;
      int x_offset = b_i * post + b_j;
      if (dy) {
        dy[y_offset] =
            dy_op(x[x_offset], y[y_offset], out[y_offset], dout[y_offset]);
      }
      if (dx) {
        val += dx_op(x[x_offset], y[y_offset], out[y_offset], dout[y_offset]);
      }
    }
    if (dx) {
      int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
      val = paddle::platform::reduceSum(val, tid, h);
      if (tid == 0) {
        dx[bid] = val;
      }
    }
  }
}

template <typename T, typename DY_OP, typename Tout = T>
static __global__ void FastCommonGradBroadcastCUDAKernelHeight(const T *x,
                                                               const T *y,
                                                               const Tout *out,
                                                               const Tout *dout,
                                                               int h,
                                                               int w,
                                                               DY_OP dy_op,
                                                               T *dy,
                                                               int x_h,
                                                               int x_w,
                                                               bool is_y) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_y) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int x_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int out_offset = n * w + m;
        int y_offset = (n % x_h) * x_w + m % x_w;
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[m], y[y_offset], out[out_offset], dout[out_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1) {
          my_val += paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        }
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

template <typename T, typename DY_OP, typename Tout = T>
static __global__ void CommonGradBroadcast1CUDAKernelHeight(const T *x,
                                                            const T *y,
                                                            const Tout *out,
                                                            const Tout *dout,
                                                            int h,
                                                            int w,
                                                            DY_OP dy_op,
                                                            T *dy,
                                                            int x_h,
                                                            int x_w,
                                                            bool is_y) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);

  if (is_y) {
    do {
      int out_offset = i * w + j;
      int x_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    do {
      int out_offset = i * w + j;
      int y_offset = (i % x_h) * x_w + j % x_w;
      if (dy) {
        val += dy_op(x[j], y[y_offset], out[out_offset], dout[out_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(const T *x,
                                                        const T *y,
                                                        const Tout *out,
                                                        const Tout *dout,
                                                        int h,
                                                        int w,
                                                        bool is_xsize_larger,
                                                        DX_OP dx_op,
                                                        DY_OP dy_op,
                                                        T *dx,
                                                        T *dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);
  if (is_xsize_larger) {
    do {
      int x_offset = i * w + j;
      if (dx) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    do {
      int y_offset = i * w + j;
      if (dy) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      if (dx) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);

    if (dx) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

// suppose use 2D block is fast because more parallel
// and memory coalesced
template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static __global__ void FastElemwiseGradBroadcast1CUDAKernel(
    const T *x,
    const T *y,
    const Tout *out,
    const Tout *dout,
    int h,
    int w,
    bool is_xsize_larger,
    DX_OP dx_op,
    DY_OP dy_op,
    T *dx,
    T *dy) {
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
  if (is_xsize_larger) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int x_offset = n * w + m;
        if (dx && m < w && n < h) {
          dx[x_offset] =
              dx_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
        }
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dy) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int y_offset = n * w + m;
        if (dy && m < w && n < h) {
          dy[y_offset] =
              dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx) {
          if (m < w && n < h) {
            T val = dx_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
      }
      if (dx) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dx[m] = sdata[0][threadIdx.x];
        }
      }
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(const T *x,
                                                        const T *y,
                                                        const Tout *out,
                                                        const Tout *dout,
                                                        int pre,
                                                        int n,
                                                        int post,
                                                        bool is_xsize_larger,
                                                        DX_OP dx_op,
                                                        DY_OP dy_op,
                                                        T *dx,
                                                        T *dy) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  T val(0);
  int ttid = tid;

  if (is_xsize_larger) {
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;

      int x_offset = i * n * post + j * post + k;

      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      if (dy != nullptr) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
    }

    if (dy) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;

      int y_offset = i * n * post + j * post + k;

      if (dy != nullptr) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      if (dx != nullptr) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
    }

    if (dx) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static void ElemwiseGradBroadcast1CUDA(gpuStream_t stream,
                                       const T *x,
                                       const T *y,
                                       const Tout *out,
                                       const Tout *dout,
                                       int h,
                                       int w,
                                       bool is_xsize_larger,
                                       DX_OP dx_op,
                                       DY_OP dy_op,
                                       T *dx,
                                       T *dy) {
  // For small case use 1D block
  constexpr int half_walf = 16;
  if (w < half_walf || h < half_walf) {
    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
    int gird_size = w;
    ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
  } else {
    // suppose perfoemance improves with h increased.
    dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
    int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
    FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
  }
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
static void ElemwiseGradBroadcast2CUDA(gpuStream_t stream,
                                       const T *x,
                                       const T *y,
                                       const Tout *out,
                                       const Tout *dout,
                                       int pre,
                                       int n,
                                       int post,
                                       bool is_xsize_larger,
                                       DX_OP dx_op,
                                       DY_OP dy_op,
                                       T *dx,
                                       T *dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, pre, n, post, is_xsize_larger, dx_op, dy_op, dx, dy);
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
template <typename T, typename DX_OP, typename Tout = T>
__global__ void CommonGradBroadcastCUDAKernel(const int *x_strides_array,
                                              const int *y_strides_array,
                                              const int *out_dims_array,
                                              const int *y_strides_order,
                                              const int *y_dims_order,
                                              const T *x,
                                              const T *y,
                                              const Tout *out,
                                              const Tout *dout,
                                              T *dx,
                                              int out_size,
                                              int max_dim,
                                              int thread_num,
                                              DX_OP dx_op) {
  T val(0);
  int i = blockIdx.x;
  int tid = threadIdx.x;
  for (int j = tid; j < thread_num; j += blockDim.x) {
    const int X_index = i * thread_num + j;
    int out_index = X_index;
    int C_index = 0;
    int B_index = i * thread_num + j;
    int remainder = 0;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(B_index, y_dims_order[d], &B_index, &remainder);
      C_index += remainder * y_strides_order[d];
    }
    int x_index = 0;
    int y_index = 0;
    int C_index_val = C_index;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(C_index_val, out_dims_array[d], &C_index_val, &remainder);
      x_index += remainder * x_strides_array[d];
      y_index += remainder * y_strides_array[d];
    }
    out_index = C_index;
    val += dx_op(x[x_index], y[y_index], out[out_index], dout[out_index]);
  }
  val = paddle::platform::reduceSum(val, tid, thread_num);
  if (threadIdx.x == 0) {
    dx[i] = val;
  }
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
void CommonGradBroadcastCUDA(const DenseTensor &x,
                             const DenseTensor &y,
                             const DenseTensor &out,
                             const DenseTensor &dout,
                             DenseTensor *dx,
                             DenseTensor *dy,
                             int *x_dims_array,
                             int *y_dims_array,
                             int *out_dims_array,
                             int max_dim,
                             const GPUContext &ctx,
                             DX_OP dx_op,
                             DY_OP dy_op) {
1268
  const auto gplace = ctx.GetPlace();
1269 1270 1271 1272 1273
  auto cplace = paddle::platform::CPUPlace();
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const Tout *out_data = out.data<Tout>();
  const Tout *dout_data = dout.data<Tout>();
1274 1275
  T *dx_data = dx == nullptr ? nullptr : ctx.Alloc<T>(dx);
  T *dy_data = dy == nullptr ? nullptr : ctx.Alloc<T>(dy);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

  std::vector<int> x_one_indexs;
  std::vector<int> y_one_indexs;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] != y_dims_array[i]) {
      if (x_dims_array[i] == 1) {
        x_one_indexs.push_back(i);
      }
      if (y_dims_array[i] == 1) {
        y_one_indexs.push_back(i);
      }
    }
  }

  std::vector<int> x_trans_indexs(max_dim);
  std::vector<int> y_trans_indexs(max_dim);
  ComputeBroadcastTranspositionArray(
      x_one_indexs.data(), x_trans_indexs.data(), max_dim, x_one_indexs.size());
  ComputeBroadcastTranspositionArray(
      y_one_indexs.data(), y_trans_indexs.data(), max_dim, y_one_indexs.size());

  // compute array stride for cuda kernel;
  // e.g. x.dims=[2,3,4], x_stride=[12,4,1]
  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  std::vector<int> out_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  int z_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    out_strides_array[i] = z_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
    z_stride *= out_dims_array[i];
  }

  std::vector<int> x_strides_order(max_dim);
  std::vector<int> y_strides_order(max_dim);
  std::vector<int> x_dims_order(max_dim);
  std::vector<int> y_dims_order(max_dim);
  for (int i = 0; i < max_dim; ++i) {
    x_strides_order[i] = out_strides_array[x_trans_indexs[i]];
    y_strides_order[i] = out_strides_array[y_trans_indexs[i]];
    x_dims_order[i] = out_dims_array[x_trans_indexs[i]];
    y_dims_order[i] = out_dims_array[y_trans_indexs[i]];
  }
  std::vector<int> x_broadcast_pos;
  std::vector<int> y_broadcast_pos;

  int bytes = max_dim * sizeof(int);

  for (int i = 0; i < max_dim; ++i) {
    if (x_dims_array[i] != out_dims_array[i] && x_dims_array[i] == 1) {
      x_broadcast_pos.emplace_back(i);
    }
    if (y_dims_array[i] != out_dims_array[i] && y_dims_array[i] == 1) {
      y_broadcast_pos.emplace_back(i);
    }
  }

  auto stream = ctx.stream();
  bool can_split_x = false;
  bool can_split_y = false;

  auto FastCommonCUDAF = [&](const std::vector<int> &broadcast_pos, bool is_y) {
    int h = std::accumulate(out_dims_array,
                            out_dims_array + broadcast_pos.size(),
                            1,
                            std::multiplies<int>());
    int w = std::accumulate(out_dims_array + broadcast_pos.size(),
                            out_dims_array + max_dim,
                            1,
                            std::multiplies<int>());

    VLOG(3) << "FastCommonCUDAF elementwise w:" << w << " h:" << h
            << " is_y:" << is_y;

    int split_h;
    int split_w;
    int kh = h;
    int kw = w;

    if (is_y) {
      split_h = std::accumulate(x_dims_array,
                                x_dims_array + broadcast_pos.size(),
                                1,
                                std::multiplies<int>());
      split_w = std::accumulate(x_dims_array + broadcast_pos.size(),
                                x_dims_array + max_dim,
                                1,
                                std::multiplies<int>());

    } else {
      split_h = std::accumulate(y_dims_array,
                                y_dims_array + broadcast_pos.size(),
                                1,
                                std::multiplies<int>());
      split_w = std::accumulate(y_dims_array + broadcast_pos.size(),
                                y_dims_array + max_dim,
                                1,
                                std::multiplies<int>());
    }

    if (h > split_h) kh = split_h;
    if (w > split_w) kw = split_w;

    if (is_y) {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size,
                                               block_size,
                                               0,
                                               stream>>>(x_data,
                                                         y_data,
                                                         out_data,
                                                         dout_data,
                                                         h,
                                                         w,
                                                         dy_op,
                                                         dy_data,
                                                         kh,
                                                         kw,
                                                         is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size,
                                                  block_size,
                                                  0,
                                                  stream>>>(x_data,
                                                            y_data,
                                                            out_data,
                                                            dout_data,
                                                            h,
                                                            w,
                                                            dy_op,
                                                            dy_data,
                                                            kh,
                                                            kw,
                                                            is_y);
      }
    } else {
      if (w < 16 || h < 16) {
        int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
        int grid_size = w;
        CommonGradBroadcast1CUDAKernelHeight<<<grid_size,
                                               block_size,
                                               0,
                                               stream>>>(x_data,
                                                         y_data,
                                                         out_data,
                                                         dout_data,
                                                         h,
                                                         w,
                                                         dx_op,
                                                         dx_data,
                                                         kh,
                                                         kw,
                                                         is_y);
      } else {
        dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
        int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
        FastCommonGradBroadcastCUDAKernelHeight<<<grid_size,
                                                  block_size,
                                                  0,
                                                  stream>>>(x_data,
                                                            y_data,
                                                            out_data,
                                                            dout_data,
                                                            h,
                                                            w,
                                                            dx_op,
                                                            dx_data,
                                                            kh,
                                                            kw,
                                                            is_y);
      }
    }
  };

  auto FastBroadCastHeightCUDAF = [&](const std::vector<int> &broadcast_pos,
                                      bool x_large) {
    int h = std::accumulate(out_dims_array,
                            out_dims_array + broadcast_pos.size(),
                            1,
                            std::multiplies<int>());
    int w = std::accumulate(out_dims_array + broadcast_pos.size(),
                            out_dims_array + max_dim,
                            1,
                            std::multiplies<int>());

    VLOG(3) << "FastBroadCastHeightCUDAF w:" << w << " h:" << h;

    if (w < 16 || h < 16) {
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
      int grid_size = w;
      ElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
          x_data,
          y_data,
          out_data,
          dout_data,
          h,
          w,
          x_large,
          dx_op,
          dy_op,
          dx_data,
          dy_data);
    } else {
      dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
      int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
      FastElemwiseGradBroadcast1CUDAKernel<<<grid_size,
                                             block_size,
                                             0,
                                             stream>>>(x_data,
                                                       y_data,
                                                       out_data,
                                                       dout_data,
                                                       h,
                                                       w,
                                                       x_large,
                                                       dx_op,
                                                       dy_op,
                                                       dx_data,
                                                       dy_data);
    }
  };

  auto FastBroadCastAllCUDAF = [&](
      const std::vector<int> &broadcast_pos, int max_dim, bool is_x_large) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(
        out_dims_array, out_dims_array + axis, 1, std::multiplies<int>());
    int mid = 1;
    int post = 1;

    if (broadcast_pos.size() == 1) {
      mid = out_dims_array[axis];
      post = std::accumulate(out_dims_array + axis + 1,
                             out_dims_array + max_dim,
                             1,
                             std::multiplies<int>());
    } else {
      mid = std::accumulate(out_dims_array + axis,
                            out_dims_array + broadcast_pos.back() + 1,
                            1,
                            std::multiplies<int>());
      post = std::accumulate(out_dims_array + broadcast_pos.back() + 1,
                             out_dims_array + max_dim,
                             1,
                             std::multiplies<int>());
    }

    VLOG(3) << "FastBroadCastAllCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;

    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
    int grid_size = pre * post;

    FastCommonGradBroadcastAllCUDAKernel<<<grid_size, block_size, 0, stream>>>(
        x_data,
        y_data,
        out_data,
        dout_data,
        pre,
        mid,
        post,
        is_x_large,
        dx_op,
        dy_op,
        dx_data,
        dy_data);
  };

  auto FastBroadCastOneCUDAF = [&](
      const std::vector<int> &broadcast_pos, int max_dim, bool is_x) {
    int axis = broadcast_pos[0];
    int pre = std::accumulate(
        out_dims_array, out_dims_array + axis, 1, std::multiplies<int>());
    int mid = out_dims_array[axis];
    int post = std::accumulate(out_dims_array + axis + 1,
                               out_dims_array + max_dim,
                               1,
                               std::multiplies<int>());

    int k_pre;
    int k_mid;
    int k_post;

    if (is_x) {
      k_pre = std::accumulate(
          y_dims_array, y_dims_array + axis, 1, std::multiplies<int>());
      k_mid = y_dims_array[axis];
      k_post = std::accumulate(y_dims_array + axis + 1,
                               y_dims_array + max_dim,
                               1,
                               std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      // we need to calc y offset with blockid, so do x_pre/y_pre to get left
      // size.
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size,
                                             block_size,
                                             0,
                                             stream>>>(x_data,
                                                       y_data,
                                                       out_data,
                                                       dout_data,
                                                       pre,
                                                       mid,
                                                       post,
                                                       k_pre,
                                                       k_mid,
                                                       k_post,
                                                       true,
                                                       dx_op,
                                                       dx_data);
    } else {
      k_pre = std::accumulate(
          x_dims_array, x_dims_array + axis, 1, std::multiplies<int>());
      k_mid = x_dims_array[axis];
      k_post = std::accumulate(x_dims_array + axis + 1,
                               x_dims_array + max_dim,
                               1,
                               std::multiplies<int>());
      int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
      int grid_size = pre * post;
      if (k_pre != pre) k_pre = pre / k_pre;

      FastCommonGradBroadcastOneCUDAKernel<<<grid_size,
                                             block_size,
                                             0,
                                             stream>>>(x_data,
                                                       y_data,
                                                       out_data,
                                                       dout_data,
                                                       pre,
                                                       mid,
                                                       post,
                                                       k_pre,
                                                       k_mid,
                                                       k_post,
                                                       false,
                                                       dy_op,
                                                       dy_data);
    }
    VLOG(3) << "FastBroadCastOneCUDAF pre:" << pre << " mid:" << mid
            << " post:" << post;
  };

  // do fast elementwise if: 1. only one input need to do broadcast, we can
  // fallback
  // to old fast path.
  // 2. if both x and y need broadcast, then do it one by one.
  bool fast_broadcast = false;
  if (x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
    if (can_split_y) {
      // only y need to do broadcast on h
      if (y_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(y_broadcast_pos, true);
        fast_broadcast = true;
      }
    } else if (y_broadcast_pos.size() == 1 ||
               CheckContiguousDims(y_broadcast_pos)) {  // for only one dim and
                                                        // contiguous broadcast.
      // If cannot split,  which means input has 3 parts
      FastBroadCastAllCUDAF(y_broadcast_pos, max_dim, true);
      fast_broadcast = true;
    }
  } else if (y_broadcast_pos.empty() && !x_broadcast_pos.empty()) {
    // only x need broadcast
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastBroadCastHeightCUDAF(x_broadcast_pos, false);
        fast_broadcast = true;
      }
    } else if (x_broadcast_pos.size() == 1 ||
               CheckContiguousDims(x_broadcast_pos)) {
      FastBroadCastAllCUDAF(x_broadcast_pos, max_dim, false);
      fast_broadcast = true;
    }
  } else if (!x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
    // do x and y broadcast each.
    can_split_y = SplitDims(y_broadcast_pos, max_dim);
    bool fast_broadcast_x = false;
    bool fast_broadcast_y = false;
    if (can_split_y) {
      // begin at start.
      if (y_broadcast_pos[0] == 0) {
        FastCommonCUDAF(y_broadcast_pos, true);
        fast_broadcast_y = true;
      }
    } else if (y_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(y_broadcast_pos, max_dim, false);
      can_split_y = true;
      fast_broadcast_y = true;
    }
    can_split_x = SplitDims(x_broadcast_pos, max_dim);
    if (can_split_x) {
      if (x_broadcast_pos[0] == 0) {
        FastCommonCUDAF(x_broadcast_pos, false);
        fast_broadcast_x = true;
      }
    } else if (x_broadcast_pos.size() == 1) {
      FastBroadCastOneCUDAF(x_broadcast_pos, max_dim, true);
      can_split_x = true;
      fast_broadcast_x = true;
    }
    VLOG(3) << "CommonBroadcast can_split_y:" << can_split_y
            << " can_split_x:" << can_split_x;
    // if both x and y into fast path then return
    if (fast_broadcast_x && fast_broadcast_y) {
      fast_broadcast = true;
    }
    if (can_split_y && can_split_x && fast_broadcast) return;
  }

  // Should remove memory copy, use reg instead.
  if (fast_broadcast) {
    return;
  }
  int x_blocks = 0;
  int x_threads = 0;
  ComputeBroadcastKernelSize(
      x_dims_array, out_dims_array, &x_blocks, &x_threads, max_dim);
  int y_blocks = 0;
  int y_threads = 0;
  ComputeBroadcastKernelSize(
      y_dims_array, out_dims_array, &y_blocks, &y_threads, max_dim);

  auto x_strides_array_tmp = paddle::memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  paddle::memory::Copy(gplace,
                       x_strides_array_gpu,
                       cplace,
                       x_strides_array.data(),
                       bytes,
                       ctx.stream());

  auto y_strides_array_tmp = paddle::memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  paddle::memory::Copy(gplace,
                       y_strides_array_gpu,
                       cplace,
                       y_strides_array.data(),
                       bytes,
                       ctx.stream());

  auto out_dims_array_tmp = paddle::memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  paddle::memory::Copy(
      gplace, out_dims_array_gpu, cplace, out_dims_array, bytes, ctx.stream());

  const int out_size = std::accumulate(
      out_dims_array, out_dims_array + max_dim, 1, std::multiplies<int>());
  int x_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, x_threads);
  int y_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, y_threads);
  if (dx) {
    auto x_strides_order_tmp = paddle::memory::Alloc(ctx, bytes);
    int *x_strides_order_gpu =
        reinterpret_cast<int *>(x_strides_order_tmp->ptr());
    paddle::memory::Copy(gplace,
                         x_strides_order_gpu,
                         cplace,
                         x_strides_order.data(),
                         bytes,
                         ctx.stream());

    auto x_dims_order_tmp = paddle::memory::Alloc(ctx, bytes);
    int *x_dims_order_gpu = reinterpret_cast<int *>(x_dims_order_tmp->ptr());
    paddle::memory::Copy(gplace,
                         x_dims_order_gpu,
                         cplace,
                         x_dims_order.data(),
                         bytes,
                         ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T,
        DX_OP,
        Tout><<<x_blocks, x_block_size, 0, ctx.stream()>>>(x_strides_array_gpu,
                                                           y_strides_array_gpu,
                                                           out_dims_array_gpu,
                                                           x_strides_order_gpu,
                                                           x_dims_order_gpu,
                                                           x_data,
                                                           y_data,
                                                           out_data,
                                                           dout_data,
                                                           dx_data,
                                                           out_size,
                                                           max_dim,
                                                           x_threads,
                                                           dx_op);
  }
  if (dy) {
    auto y_strides_order_tmp = paddle::memory::Alloc(ctx, bytes);
    int *y_strides_order_gpu =
        reinterpret_cast<int *>(y_strides_order_tmp->ptr());
    paddle::memory::Copy(gplace,
                         y_strides_order_gpu,
                         cplace,
                         y_strides_order.data(),
                         bytes,
                         ctx.stream());

    auto y_dims_order_tmp = paddle::memory::Alloc(ctx, bytes);
    int *y_dims_order_gpu = reinterpret_cast<int *>(y_dims_order_tmp->ptr());
    paddle::memory::Copy(gplace,
                         y_dims_order_gpu,
                         cplace,
                         y_dims_order.data(),
                         bytes,
                         ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T,
        DY_OP,
        Tout><<<y_blocks, y_block_size, 0, ctx.stream()>>>(x_strides_array_gpu,
                                                           y_strides_array_gpu,
                                                           out_dims_array_gpu,
                                                           y_strides_order_gpu,
                                                           y_dims_order_gpu,
                                                           x_data,
                                                           y_data,
                                                           out_data,
                                                           dout_data,
                                                           dy_data,
                                                           out_size,
                                                           max_dim,
                                                           y_threads,
                                                           dy_op);
  }
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
void CommonElementwiseBroadcastBackward(const GPUContext &ctx,
                                        const DDim &x_dims,
                                        const DDim &y_dims,
                                        const DenseTensor &x,
                                        const DenseTensor &y,
                                        const DenseTensor &out,
                                        const DenseTensor &dout,
                                        int axis,
                                        DenseTensor *dx,
                                        DenseTensor *dy,
                                        DX_OP dx_op,
                                        DY_OP dy_op) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  funcs::GetBroadcastDimsArrays(x_dims,
                                y_dims,
                                x_dims_array.data(),
                                y_dims_array.data(),
                                out_dims_array.data(),
                                max_dim,
                                axis);
  // for inplace strategy. memset will make dx and dout clear and get wrong
  // result.
  if (dx && dx->IsSharedBufferWith(dout)) {
    dx->clear();
    dx->mutable_data<T>(x_dims, ctx.GetPlace());
  }

  VLOG(3) << "CommonElementwiseBroadcastBackward xdims:"
1851 1852
          << pten::framework::make_ddim(x_dims_array)
          << " ydim:" << pten::framework::make_ddim(y_dims_array);
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

  CommonGradBroadcastCUDA<T, DX_OP, DY_OP, Tout>(x,
                                                 y,
                                                 out,
                                                 dout,
                                                 dx,
                                                 dy,
                                                 x_dims_array.data(),
                                                 y_dims_array.data(),
                                                 out_dims_array.data(),
                                                 max_dim,
                                                 ctx,
                                                 dx_op,
                                                 dy_op);
}

template <typename T, typename DX_OP, typename DY_OP, typename Tout = T>
void ElemwiseGradComputeWithBroadcast(const GPUContext &ctx,
                                      const DDim &x_dims,
                                      const DDim &y_dims,
                                      const DenseTensor &x,
                                      const DenseTensor &y,
                                      const DenseTensor &out,
                                      const DenseTensor &dout,
                                      int axis,
                                      DenseTensor *dx,
                                      DenseTensor *dy,
                                      DX_OP dx_op,
                                      DY_OP dy_op) {
  bool is_xsize_larger = true;

  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }

  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      paddle::platform::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    paddle::platform::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = funcs::trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    funcs::get_mid_dims(x_dims,
                        y_dims_trimed,
                        axis_trim,
                        &pre,
                        &n,
                        &post,
                        &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = funcs::trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    funcs::get_mid_dims(y_dims,
                        x_dims_trimed,
                        axis_trim,
                        &pre,
                        &n,
                        &post,
                        &is_run_common_broadcast);
  }
  // special case for common backward implementation.
  if (is_run_common_broadcast) {
    CommonElementwiseBroadcastBackward<T, DX_OP, DY_OP, Tout>(
        ctx, x_dims, y_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    return;
  }
  if (post == 1) {
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    ElemwiseGradBroadcast1CUDA(ctx.stream(),
                               x.data<T>(),
                               y.data<T>(),
                               out.data<Tout>(),
                               dout.data<Tout>(),
                               pre,
                               n,
                               is_xsize_larger,
                               dx_op,
                               dy_op,
                               dx == nullptr ? nullptr : ctx.Alloc<T>(dx),
                               dy == nullptr ? nullptr : ctx.Alloc<T>(dy));
1945
  } else {
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
    ElemwiseGradBroadcast2CUDA(ctx.stream(),
                               x.data<T>(),
                               y.data<T>(),
                               out.data<Tout>(),
                               dout.data<Tout>(),
                               pre,
                               n,
                               post,
                               is_xsize_larger,
                               dx_op,
                               dy_op,
                               dx == nullptr ? nullptr : ctx.Alloc<T>(dx),
                               dy == nullptr ? nullptr : ctx.Alloc<T>(dy));
1959 1960 1961
  }
}

1962 1963 1964 1965 1966 1967
/*
******************************
    Add Grad
******************************
*/

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
template <typename T>
static __global__ void SimpleElemwiseAddGradCUDAKernel(
    const T *__restrict__ dout, int size, int vec_size, T *dx, T *dy) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = gridDim.x * blockDim.x;
  int loop = size / vec_size;
  int remainder = size % vec_size;
  const float4 *dout_vec = reinterpret_cast<const float4 *>(dout);
  float4 *dx_vec = reinterpret_cast<float4 *>(dx);
  float4 *dy_vec = reinterpret_cast<float4 *>(dy);
  float4 tmp_loop;

  for (int i = tid; i < loop; i += stride) {
    tmp_loop = dout_vec[i];
    dx_vec[i] = tmp_loop;
    dy_vec[i] = tmp_loop;
  }

  if (tid == loop && remainder != 0) {
    T tmp_rem;
    while (remainder) {
      int idx = size - remainder;
      remainder--;
      tmp_rem = dout[idx];
      dx[idx] = tmp_rem;
      dy[idx] = tmp_rem;
    }
  }
}

template <typename T>
void default_elementwise_add_grad(const GPUContext &ctx,
                                  const DenseTensor &x,
                                  const DenseTensor &y,
                                  const DenseTensor &out,
                                  const DenseTensor &dout,
                                  DenseTensor *dx,
                                  DenseTensor *dy,
                                  int axis = -1) {
  auto *dout_data = dout.data<T>();

  // dx
  if (dx != nullptr) {
    auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
    if (dx->dims() == dout.dims()) {
      if (dx_data != dout_data) {
        pten::Copy(ctx, dout, false, dx);
      }
    } else {
      // For inplace strategy, dx will be stored in addr of dout, which makes
      // the result of dy wrong.
      if (dx->IsSharedBufferWith(dout)) {
        dx->clear();
        dx->mutable_data<T>(x.dims(), ctx.GetPlace());
      }
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(x.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
2026
      kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
W
Wilber 已提交
2027
          ctx, dout, dx, kps::IdentityFunctor<T>(), reduce_dims, stream);
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    }
  }
  // dy
  if (dy != nullptr) {
    auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
    if (dy->dims() == dout.dims()) {
      if (dy_data != dout_data) {
        pten::Copy(ctx, dout, false, dy);
      }
    } else {
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(y.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
2041
      kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
W
Wilber 已提交
2042
          ctx, dout, dy, kps::IdentityFunctor<T>(), reduce_dims, stream);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    }
  }
}

template <typename T>
void elementwise_add_grad(const GPUContext &ctx,
                          const DenseTensor &x,
                          const DenseTensor &y,
                          const DenseTensor &out,
                          const DenseTensor &dout,
                          DenseTensor *dx,
                          DenseTensor *dy) {
  auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
  auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
  auto *dout_data = dout.data<T>();
  if (dx_data == dout_data && dy_data != dout_data) {
    VLOG(4) << "Special case when dx_data is the same as dout_data, "
               "only need copy dout to dy";
    pten::Copy(ctx, dout, false, dy);
  } else if (dx_data != dout_data && dy_data == dout_data) {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "only need copy dout to dx";
    pten::Copy(ctx, dout, false, dx);
  } else if (dx_data != dout_data && dy_data != dout_data) {
    auto size = x.numel();
    int vec_size = max(static_cast<int>(sizeof(float4) / sizeof(T)), 1);
    dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1);
    dim3 grid_size =
        dim3(((size + vec_size - 1) / vec_size + PREDEFINED_BLOCK_SIZE - 1) /
                 PREDEFINED_BLOCK_SIZE,
             1);
    SimpleElemwiseAddGradCUDAKernel<
        T><<<grid_size, block_size, 0, ctx.stream()>>>(
        dout.data<T>(),
        size,
        vec_size,
        dx->mutable_data<T>(ctx.GetPlace()),
        dy->mutable_data<T>(ctx.GetPlace()));
  } else {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "and dx_data is the same as dout_data, do not need "
               "any operator";
  }
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
/*
******************************
    Sub Grad
******************************
*/

template <typename T>
static __global__ void SimpleElemwiseSubGradCUDAKernel(const T *dout,
                                                       int64_t size,
                                                       T *dx,
                                                       T *dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    if (dx != nullptr) {
      dx[col] = dout[col];
    }
    dy[col] = -dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename T>
void default_elementwise_sub_grad(const GPUContext &ctx,
                                  const DenseTensor &x,
                                  const DenseTensor &y,
                                  const DenseTensor &out,
                                  const DenseTensor &dout,
                                  DenseTensor *dx,
                                  DenseTensor *dy,
                                  int axis = -1) {
  auto *dout_data = dout.data<T>();
  // dx
  if (dx != nullptr) {
    auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
    if (dx->dims() == dout.dims()) {
      if (dx_data != dout_data) {
        pten::Copy(ctx, dout, false, dx);
      }
    } else {
      // For inplace strategy, dx will be stored in addr of dout, which makes
      // the result of dy wrong.
      if (dx->IsSharedBufferWith(dout)) {
        dx->clear();
        dx->mutable_data<T>(x.dims(), ctx.GetPlace());
      }
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(x.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
2137
      kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
W
Wilber 已提交
2138
          ctx, dout, dx, kps::IdentityFunctor<T>(), reduce_dims, stream);
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
    }
  }
  // dy
  if (dy != nullptr) {
    auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
    if (dy->dims() == dout.dims()) {
      if (dy_data != dout_data) {
        dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1);
        auto size = dy->numel();
        dim3 grid_size =
            dim3((size + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1);
        SimpleElemwiseSubGradCUDAKernel<
            T><<<grid_size, block_size, 0, ctx.stream()>>>(
            dout.data<T>(), size, nullptr, dy->mutable_data<T>(ctx.GetPlace()));
      }
    } else {
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(y.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
2158
      kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::InverseFunctor<T>>(
W
Wilber 已提交
2159
          ctx, dout, dy, kps::InverseFunctor<T>(), reduce_dims, stream);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    }
  }
}

template <typename T>
void elementwise_sub_grad(const GPUContext &ctx,
                          const DenseTensor &x,
                          const DenseTensor &y,
                          const DenseTensor &out,
                          const DenseTensor &dout,
                          DenseTensor *dx,
                          DenseTensor *dy) {
  dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1);
  auto size = x.numel();
  dim3 grid_size =
      dim3((size + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1);
  SimpleElemwiseSubGradCUDAKernel<
      T><<<grid_size, block_size, 0, ctx.stream()>>>(
      dout.data<T>(),
      size,
      dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

2184
}  // namespace pten