conv.py 50.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27
]

import numpy as np

L
LielinJiang 已提交
28 29
from ...fluid import core
from ...device import get_cudnn_version
30 31 32 33 34 35 36 37 38 39 40 41 42
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


43 44 45 46 47 48 49 50
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

76 77 78 79 80 81 82 83 84 85 86 87
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
88 89 90 91 92 93 94
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
95 96 97 98 99
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
100
        self._padding_mode = padding_mode
L
LielinJiang 已提交
101
        self.output_padding = output_padding
L
LielinJiang 已提交
102 103 104
        if dims != 1:
            self._padding, self._padding_algorithm = _update_padding_nd(
                padding, channel_last, dims)
L
LielinJiang 已提交
105 106 107 108

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
L
LielinJiang 已提交
109 110
            self._padding, self._padding_algorithm = _update_padding_nd(
                padding, channel_last, dims)
L
LielinJiang 已提交
111
        else:
112 113 114 115
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
116 117
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
118 119 120
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
121 122
                self._padding, _ = _update_padding_nd(0, channel_last, dims)

L
LielinJiang 已提交
123 124 125 126 127 128 129 130
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
131 132 133 134 135 136 137 138 139 140 141
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
        if dims == 2 and (in_channels == groups and in_channels != 1 and
                          out_channels % in_channels == 0):
            self.op_type = 'depthwise_conv2d'
            self._use_cudnn = False

L
LielinJiang 已提交
142

C
cnn 已提交
143
class Conv1D(_ConvNd):
W
whs 已提交
144
    """
C
cnn 已提交
145
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, L_{in})`
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
        - Output:
          Output shape: :math:`(N, C_{out}, L_{out})`
        Where
        .. math::
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
202
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
    Examples:
        .. code-block:: python
          import paddle
C
cnn 已提交
224
          from paddle.nn import Conv1D
W
whs 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          paddle.disable_static()
          x_t = paddle.to_tensor(x)
C
cnn 已提交
238
          conv = Conv1D(3, 2, 3)
W
whs 已提交
239 240 241 242 243 244
          conv.weight.set_value(w)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print(y_np)
          # [[[133. 238.]
          #   [160. 211.]]]
245
    """
S
swtkiwi 已提交
246

247
    def __init__(self,
248 249 250
                 in_channels,
                 out_channels,
                 kernel_size,
251
                 stride=1,
252
                 padding=0,
253 254
                 dilation=1,
                 groups=1,
255 256
                 padding_mode='zeros',
                 weight_attr=None,
257
                 bias_attr=None,
L
LielinJiang 已提交
258
                 data_format="NCL"):
C
cnn 已提交
259
        super(Conv1D, self).__init__(
260 261 262 263
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
264
            1,
265 266 267 268 269 270 271 272
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
273

274
    def forward(self, x):
L
LielinJiang 已提交
275 276
        padding = 0
        if self._padding_mode != "zeros":
277
            x = F.pad(x,
W
whs 已提交
278
                      self._reversed_padding_repeated_twice,
279 280
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
281 282
        else:
            padding = self._padding
283

L
LielinJiang 已提交
284
        out = F.conv1d(
285
            x,
286 287
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
288
            padding=padding,
289 290 291 292 293 294 295
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
296
class Conv1DTranspose(_ConvNd):
297
    """
C
cnn 已提交
298
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
370
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is
            "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a
            tuple, it must contain one integer, (feature_length). None if use
            kernel_size, padding, output_padding and stride to calculate output_size.
            If output_size and kernel_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and kernel_size
            should not be None at the same time.
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
409
          from paddle.nn import Conv1DTranspose
410 411 412 413 414 415 416 417 418 419
          import numpy as np
          
          paddle.disable_static()
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
420
          conv = Conv1DTranspose(2, 1, 2)
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
          conv.weight.set_value(y)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print y_np
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
441
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
455 456

    def forward(self, x, output_size=None):
457
        out = F.conv1d_transpose(
458 459 460 461
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
462 463 464 465 466 467 468 469 470
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
471
class Conv2D(_ConvNd):
L
LielinJiang 已提交
472
    """
C
cnn 已提交
473
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
521
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
566 567 568
          
          paddle.disable_static()
          
569
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
570
          
C
cnn 已提交
571
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
590
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
611 612

        out = F.conv._conv_nd(
L
LielinJiang 已提交
613 614 615
            x,
            self.weight,
            bias=self.bias,
616
            stride=self._stride,
L
LielinJiang 已提交
617 618
            padding=self._padding,
            padding_algorithm=self._padding_algorithm,
619 620
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
621 622 623 624
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
625 626 627
        return out


C
cnn 已提交
628
class Conv2DTranspose(_ConvNd):
629
    """
C
cnn 已提交
630
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
646 647 648

    ..  math::

649
        Out = \sigma (W \\ast X + b)
650

651
    Where:
652

653 654 655 656 657 658
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
659
    
660
    Parameters:
L
LielinJiang 已提交
661 662 663 664 665
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
666 667 668
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
669 670 671 672 673 674 675
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
676 677
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
678
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
679 680
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
681
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
682 683 684 685 686
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
687
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
688 689 690
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
691
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
692 693 694 695
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
696
        data_format(str, optional): Data format that specifies the layout of input.
697
            It can be "NCHW" or "NHWC". Default: "NCHW".
698

699
    Attribute:
700

701
        **weight** (Parameter): the learnable weights of filters of this layer.
702

703
        **bias** (Parameter or None): the learnable bias of this layer.
704

L
LielinJiang 已提交
705
    Shape:
706

L
LielinJiang 已提交
707
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
708

L
LielinJiang 已提交
709
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
710

L
LielinJiang 已提交
711
        Where
712 713 714 715 716 717 718 719 720 721 722

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

723
    Examples:
724

725
       .. code-block:: python
726

L
LielinJiang 已提交
727 728
          import paddle
          import paddle.nn as nn
C
cnn 已提交
729 730
          
          paddle.disable_static()
731 732 733

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
734
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
735 736 737
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
738 739 740 741
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
742 743 744
                 in_channels,
                 out_channels,
                 kernel_size,
745
                 stride=1,
L
LielinJiang 已提交
746 747
                 padding=0,
                 output_padding=0,
748 749
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
750
                 weight_attr=None,
751
                 bias_attr=None,
L
LielinJiang 已提交
752
                 data_format="NCHW"):
C
cnn 已提交
753
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
769
        if output_size is None:
L
LielinJiang 已提交
770
            output_padding = self.output_padding
771
        else:
L
LielinJiang 已提交
772
            output_padding = 0
773

774
        out = F.conv2d_transpose(
L
LielinJiang 已提交
775
            x,
776 777 778
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
779
            output_padding=output_padding,
780 781 782
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
783
            output_size=output_size,
784 785 786 787
            data_format=self._data_format)
        return out


C
cnn 已提交
788
class Conv3D(_ConvNd):
789
    """
790 791
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
792 793 794 795 796 797 798 799 800
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
801 802 803

    ..  math::

804
        Out = \sigma (W \\ast X + b)
805

806
    In the above equation:
807

808 809 810 811 812 813
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
814

815
    Parameters:
816 817
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
818 819
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
820 821
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
822
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
823 824 825 826 827 828
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
829
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
830 831
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
832
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
833 834 835 836
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
837 838
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
839 840 841 842
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
843
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
844 845 846 847
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
848
        data_format(str, optional): Data format that specifies the layout of input.
849
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
850

851
    Attribute:
852

853
        **weight** (Parameter): the learnable weights of filters of this layer.
854

855
        **bias** (Parameter): the learnable bias of this layer.
856

857
    Shape:
858

859
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
860

861
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
862

863
        Where
864 865 866 867 868 869 870 871 872

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

873 874 875
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
876

877
    Examples:
878

879
        .. code-block:: python
880

881 882
          import paddle
          import paddle.nn as nn
C
cnn 已提交
883 884
          
          paddle.disable_static()
885 886

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
887
          
C
cnn 已提交
888
          conv = nn.Conv3D(4, 6, (3, 3, 3))
889 890 891
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
892 893 894 895
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
896 897 898
                 in_channels,
                 out_channels,
                 kernel_size,
899
                 stride=1,
L
LielinJiang 已提交
900
                 padding=0,
901 902
                 dilation=1,
                 groups=1,
903 904
                 padding_mode='zeros',
                 weight_attr=None,
905
                 bias_attr=None,
906
                 data_format="NCDHW"):
C
cnn 已提交
907
        super(Conv3D, self).__init__(
908 909 910 911 912 913 914 915 916 917 918 919 920
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
921

922 923 924 925 926 927
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
928 929

        out = F.conv._conv_nd(
930
            x,
931 932 933
            self.weight,
            bias=self.bias,
            stride=self._stride,
L
LielinJiang 已提交
934 935
            padding=self._padding,
            padding_algorithm=self._padding_algorithm,
936 937
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
938 939 940 941
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
942 943 944
        return out


C
cnn 已提交
945
class Conv3DTranspose(_ConvNd):
946 947 948 949 950 951 952 953 954 955 956 957 958 959
    """
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
960 961 962
    
    ..  math::

963
        Out = \sigma (W \\ast X + b)
964

965
    In the above equation:
966

967 968 969 970 971 972
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
973

974
    **Note**:
975

976
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
977
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
978
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
979 980 981 982 983 984
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
985
          conv3d_transpose can compute the kernel size automatically.
986

987
    Parameters:
L
LielinJiang 已提交
988 989 990 991 992 993 994 995 996
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
997 998 999 1000 1001 1002 1003
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1004 1005 1006
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1007 1008
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1009
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1010 1011 1012 1013 1014
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1015
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1016 1017 1018
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1019
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1020 1021 1022 1023
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1024 1025 1026 1027 1028
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1029
        data_format(str, optional): Data format that specifies the layout of input.
1030
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1031

1032
    Attribute:
1033

1034
        **weight** (Parameter): the learnable weights of filters of this layer.
1035

1036
        **bias** (Parameter): the learnable bias of this layer.
1037

L
LielinJiang 已提交
1038
    Shape:
1039

L
LielinJiang 已提交
1040
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1041

L
LielinJiang 已提交
1042
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1043

L
LielinJiang 已提交
1044
        Where
1045 1046 1047 1048 1049 1050 1051 1052 1053

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1054 1055 1056 1057
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1058

1059
       .. code-block:: python
1060

L
LielinJiang 已提交
1061 1062
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1063 1064
          
          paddle.disable_static()
1065 1066

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1067
          
C
cnn 已提交
1068
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1069 1070 1071
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1072 1073 1074 1075
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1076 1077 1078
                 in_channels,
                 out_channels,
                 kernel_size,
1079
                 stride=1,
L
LielinJiang 已提交
1080 1081
                 padding=0,
                 output_padding=0,
1082 1083
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1084
                 weight_attr=None,
1085
                 bias_attr=None,
L
LielinJiang 已提交
1086
                 data_format="NCDHW"):
C
cnn 已提交
1087
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1102
    def forward(self, x, output_size=None):
1103
        if output_size is None:
L
LielinJiang 已提交
1104
            output_padding = self.output_padding
1105
        else:
L
LielinJiang 已提交
1106
            output_padding = 0
1107

1108
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1109
            x,
1110 1111 1112
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1113
            output_padding=output_padding,
1114 1115 1116
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1117
            output_size=output_size,
1118 1119
            data_format=self._data_format)
        return out