conv.py 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
]

import numpy as np

from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


41 42 43 44 45 46 47 48
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

74 75 76 77 78 79 80 81 82 83 84 85
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
86 87 88 89 90
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
91
        self._padding_mode = padding_mode
L
LielinJiang 已提交
92 93 94 95 96 97
        self.output_padding = output_padding

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
98 99 100 101
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
102 103
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
104 105 106
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
107 108 109 110 111 112 113 114 115
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)


C
cnn 已提交
116
class Conv1D(_ConvNd):
W
whs 已提交
117
    """
C
cnn 已提交
118
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, L_{in})`
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
        - Output:
          Output shape: :math:`(N, C_{out}, L_{out})`
        Where
        .. math::
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
175
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
    Examples:
        .. code-block:: python
          import paddle
C
cnn 已提交
197
          from paddle.nn import Conv1D
W
whs 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          paddle.disable_static()
          x_t = paddle.to_tensor(x)
C
cnn 已提交
211
          conv = Conv1D(3, 2, 3)
W
whs 已提交
212 213 214 215 216 217
          conv.weight.set_value(w)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print(y_np)
          # [[[133. 238.]
          #   [160. 211.]]]
218
    """
S
swtkiwi 已提交
219

220
    def __init__(self,
221 222 223
                 in_channels,
                 out_channels,
                 kernel_size,
224
                 stride=1,
225
                 padding=0,
226 227
                 dilation=1,
                 groups=1,
228 229
                 padding_mode='zeros',
                 weight_attr=None,
230
                 bias_attr=None,
L
LielinJiang 已提交
231
                 data_format="NCL"):
C
cnn 已提交
232
        super(Conv1D, self).__init__(
233 234 235 236
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
237
            1,
238 239 240 241 242 243 244 245
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
246

247
    def forward(self, x):
L
LielinJiang 已提交
248 249
        padding = 0
        if self._padding_mode != "zeros":
250
            x = F.pad(x,
W
whs 已提交
251
                      self._reversed_padding_repeated_twice,
252 253
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
254 255
        else:
            padding = self._padding
256

L
LielinJiang 已提交
257
        out = F.conv1d(
258
            x,
259 260
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
261
            padding=padding,
262 263 264 265 266 267 268
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
269
class Conv1DTranspose(_ConvNd):
270
    """
C
cnn 已提交
271
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
343
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is
            "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a
            tuple, it must contain one integer, (feature_length). None if use
            kernel_size, padding, output_padding and stride to calculate output_size.
            If output_size and kernel_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and kernel_size
            should not be None at the same time.
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
382
          from paddle.nn import Conv1DTranspose
383 384 385 386 387 388 389 390 391 392
          import numpy as np
          
          paddle.disable_static()
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
393
          conv = Conv1DTranspose(2, 1, 2)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
          conv.weight.set_value(y)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print y_np
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
414
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
428 429

    def forward(self, x, output_size=None):
430
        out = F.conv1d_transpose(
431 432 433 434
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
435 436 437 438 439 440 441 442 443
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
444
class Conv2D(_ConvNd):
L
LielinJiang 已提交
445
    """
C
cnn 已提交
446
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
494
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
539 540 541
          
          paddle.disable_static()
          
542
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
543
          
C
cnn 已提交
544
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
563
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv2d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)

        out = F.conv2d(
            x,
            self.weight,
            bias=self.bias,
597
            padding=self._padding,
598 599 600 601 602 603 604
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
605
class Conv2DTranspose(_ConvNd):
606
    """
C
cnn 已提交
607
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
623 624 625

    ..  math::

626
        Out = \sigma (W \\ast X + b)
627

628
    Where:
629

630 631 632 633 634 635
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
636
    
637
    Parameters:
L
LielinJiang 已提交
638 639 640 641 642
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
643 644 645
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
646 647 648 649 650 651 652
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
653 654
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
655
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
656 657
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
658
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
659 660 661 662 663
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
664
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
665 666 667
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
668
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
669 670 671 672
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
673
        data_format(str, optional): Data format that specifies the layout of input.
674
            It can be "NCHW" or "NHWC". Default: "NCHW".
675

676
    Attribute:
677

678
        **weight** (Parameter): the learnable weights of filters of this layer.
679

680
        **bias** (Parameter or None): the learnable bias of this layer.
681

L
LielinJiang 已提交
682
    Shape:
683

L
LielinJiang 已提交
684
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
685

L
LielinJiang 已提交
686
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
687

L
LielinJiang 已提交
688
        Where
689 690 691 692 693 694 695 696 697 698 699

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

700
    Examples:
701

702
       .. code-block:: python
703

L
LielinJiang 已提交
704 705
          import paddle
          import paddle.nn as nn
C
cnn 已提交
706 707
          
          paddle.disable_static()
708 709 710

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
711
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
712 713 714
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
715 716 717 718
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
719 720 721
                 in_channels,
                 out_channels,
                 kernel_size,
722
                 stride=1,
L
LielinJiang 已提交
723 724
                 padding=0,
                 output_padding=0,
725 726
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
727
                 weight_attr=None,
728
                 bias_attr=None,
L
LielinJiang 已提交
729
                 data_format="NCHW"):
C
cnn 已提交
730
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
746
        if output_size is None:
L
LielinJiang 已提交
747
            output_padding = self.output_padding
748
        else:
L
LielinJiang 已提交
749
            output_padding = 0
750

751
        out = F.conv2d_transpose(
L
LielinJiang 已提交
752
            x,
753 754 755
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
756
            output_padding=output_padding,
757 758 759
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
760
            output_size=output_size,
761 762 763 764
            data_format=self._data_format)
        return out


C
cnn 已提交
765
class Conv3D(_ConvNd):
766
    """
767 768
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
769 770 771 772 773 774 775 776 777
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
778 779 780

    ..  math::

781
        Out = \sigma (W \\ast X + b)
782

783
    In the above equation:
784

785 786 787 788 789 790
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
791

792
    Parameters:
793 794
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
795 796
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
797 798
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
799
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
800 801 802 803 804 805
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
806
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
807 808
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
809
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
810 811 812 813
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
814 815
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
816 817 818 819
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
820
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
821 822 823 824
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
825
        data_format(str, optional): Data format that specifies the layout of input.
826
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
827

828
    Attribute:
829

830
        **weight** (Parameter): the learnable weights of filters of this layer.
831

832
        **bias** (Parameter): the learnable bias of this layer.
833

834
    Shape:
835

836
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
837

838
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
839

840
        Where
841 842 843 844 845 846 847 848 849

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

850 851 852
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
853

854
    Examples:
855

856
        .. code-block:: python
857

858 859
          import paddle
          import paddle.nn as nn
C
cnn 已提交
860 861
          
          paddle.disable_static()
862 863

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
864
          
C
cnn 已提交
865
          conv = nn.Conv3D(4, 6, (3, 3, 3))
866 867 868
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
869 870 871 872
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
873 874 875
                 in_channels,
                 out_channels,
                 kernel_size,
876
                 stride=1,
L
LielinJiang 已提交
877
                 padding=0,
878 879
                 dilation=1,
                 groups=1,
880 881
                 padding_mode='zeros',
                 weight_attr=None,
882
                 bias_attr=None,
883
                 data_format="NCDHW"):
C
cnn 已提交
884
        super(Conv3D, self).__init__(
885 886 887 888 889 890 891 892 893 894 895 896 897
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv3d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
913 914

        out = F.conv3d(
915
            x,
916 917 918 919 920 921 922 923 924 925
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
926
class Conv3DTranspose(_ConvNd):
927 928 929 930 931 932 933 934 935 936 937 938 939 940
    """
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
941 942 943
    
    ..  math::

944
        Out = \sigma (W \\ast X + b)
945

946
    In the above equation:
947

948 949 950 951 952 953
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
954

955
    **Note**:
956

957
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
958
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
959
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
960 961 962 963 964 965
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
966
          conv3d_transpose can compute the kernel size automatically.
967

968
    Parameters:
L
LielinJiang 已提交
969 970 971 972 973 974 975 976 977
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
978 979 980 981 982 983 984
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
985 986 987
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
988 989
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
990
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
991 992 993 994 995
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
996
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
997 998 999
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1000
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1001 1002 1003 1004
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1005 1006 1007 1008 1009
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1010
        data_format(str, optional): Data format that specifies the layout of input.
1011
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1012

1013
    Attribute:
1014

1015
        **weight** (Parameter): the learnable weights of filters of this layer.
1016

1017
        **bias** (Parameter): the learnable bias of this layer.
1018

L
LielinJiang 已提交
1019
    Shape:
1020

L
LielinJiang 已提交
1021
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1022

L
LielinJiang 已提交
1023
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1024

L
LielinJiang 已提交
1025
        Where
1026 1027 1028 1029 1030 1031 1032 1033 1034

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1035 1036 1037 1038
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1039

1040
       .. code-block:: python
1041

L
LielinJiang 已提交
1042 1043
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1044 1045
          
          paddle.disable_static()
1046 1047

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1048
          
C
cnn 已提交
1049
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1050 1051 1052
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1053 1054 1055 1056
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1057 1058 1059
                 in_channels,
                 out_channels,
                 kernel_size,
1060
                 stride=1,
L
LielinJiang 已提交
1061 1062
                 padding=0,
                 output_padding=0,
1063 1064
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1065
                 weight_attr=None,
1066
                 bias_attr=None,
L
LielinJiang 已提交
1067
                 data_format="NCDHW"):
C
cnn 已提交
1068
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1083
    def forward(self, x, output_size=None):
1084
        if output_size is None:
L
LielinJiang 已提交
1085
            output_padding = self.output_padding
1086
        else:
L
LielinJiang 已提交
1087
            output_padding = 0
1088

1089
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1090
            x,
1091 1092 1093
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1094
            output_padding=output_padding,
1095 1096 1097
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1098
            output_size=output_size,
1099 1100
            data_format=self._data_format)
        return out