dense_tensor.cc 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/core/dense_tensor.h"

17
// See Note [ Why still include the fluid headers? ]
18 19 20
#include "paddle/pten/common/bfloat16.h"
#include "paddle/pten/common/complex.h"
#include "paddle/pten/common/float16.h"
21

22 23 24
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/convert_utils.h"

25 26 27 28 29 30 31 32
namespace paddle {
namespace framework {
extern void TensorCopy(const pten::DenseTensor& src,
                       const paddle::platform::Place& dst_place,
                       pten::DenseTensor* dst);
}
}

33 34
namespace pten {

35
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
36
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
37

38
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
39
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
40

41
DenseTensor::DenseTensor(const std::shared_ptr<pten::Allocation>& holder,
42
                         const DenseTensorMeta& meta)
43
    : meta_(meta), holder_(holder) {}
44

45
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
46
  holder_ = other.holder_;
47 48 49 50 51

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
}
52

53 54
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
55
  holder_ = other.holder_;
56 57 58
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
59 60 61
  return *this;
}

62 63
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
64
  std::swap(holder_, other.holder_);
65 66 67
  return *this;
}

68 69 70 71 72 73 74 75
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
76
  return holder_ && holder_ == b.Holder();
77 78 79 80
}

template <typename T>
const T* DenseTensor::data() const {
81
  check_memory_size();
82
  PADDLE_ENFORCE(
83
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
84
      paddle::platform::errors::InvalidArgument(
85 86 87 88 89
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

90 91 92 93 94 95 96 97
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
      paddle::platform::errors::InvalidArgument(
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
98
  return static_cast<T*>(data());
99 100
}

101
void* DenseTensor::data() {
102
  check_memory_size();
103
  PADDLE_ENFORCE_NOT_NULL(
104
      holder_,
105
      paddle::platform::errors::PreconditionNotMet(
106 107
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
108
                                 meta_.offset);
109 110
}

111
const void* DenseTensor::data() const {
112
  check_memory_size();
113
  PADDLE_ENFORCE_NOT_NULL(
114
      holder_,
115
      paddle::platform::errors::PreconditionNotMet(
116
          "The storage must be valid when call the data function."));
117
  return reinterpret_cast<const void*>(
118
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
119 120
}

121 122 123 124 125 126
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
                 paddle::platform::errors::InvalidArgument(
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
127 128
}

129 130 131 132 133 134 135 136 137 138 139 140 141
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
      paddle::platform::errors::InvalidArgument(
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
}

142 143 144 145 146 147 148 149 150 151
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
152
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
153
  meta_.dims = dims;
154 155
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
156
  }
石晓伟 已提交
157 158
}

159 160
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

161 162 163
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16);
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128);

#undef DATA_MEMBER_FUNC_INSTANTIATION

183 184 185 186 187 188 189 190 191
/* --------------------------- */
/*   From framework::Tensor    */
/* --------------------------- */
DenseTensor::DenseTensor() {
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = paddle::experimental::DataType::FLOAT32;
  meta_.offset = 0;
}

192
DenseTensor::DenseTensor(paddle::framework::proto::VarType::Type dtype) {
193 194 195 196 197 198
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = TransToPtenDataType(dtype);
  meta_.offset = 0;
}

size_t DenseTensor::memory_size() const {
199
  return holder_ == nullptr ? 0UL : holder_->size() - meta_.offset;
200 201 202
}

void DenseTensor::check_memory_size() const {
203
  PADDLE_ENFORCE_NOT_NULL(holder_,
204 205 206 207
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  PADDLE_ENFORCE_LE(
208
      numel() * SizeOf(dtype()),
209 210 211 212 213
      memory_size(),
      paddle::platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
214 215
          "But received Tensor's dimension is d%, memory's size is %d.",
          numel() * SizeOf(dtype()),
216 217 218 219 220
          memory_size()));
}

const paddle::platform::Place& DenseTensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
221
      holder_,
222
      paddle::platform::errors::PreconditionNotMet(
223 224
          "Tensor not initialized yet when DenseTensor::place() is called."));
  return holder_->place();
225 226 227 228 229 230 231 232 233 234 235 236 237 238
}

paddle::framework::proto::VarType::Type DenseTensor::type() const {
  return TransToProtoVarType(meta_.dtype);
}

paddle::framework::proto::VarType::Type DenseTensor::saved_type() const {
  return TransToProtoVarType(meta_.dtype);
}

void DenseTensor::set_layout(const paddle::framework::DataLayout layout) {
  meta_.layout = layout;
}

239
void DenseTensor::ResetHolder(const std::shared_ptr<pten::Allocation>& holder) {
240 241 242 243 244 245
  PADDLE_ENFORCE_EQ(
      meta_.offset,
      0,
      paddle::platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));

246
  if (holder_) {
247 248 249 250 251
    // TODO(zyfncg): The change of static_cast<> in check will recover back
    // when SetAllocationForOutputTenosr is deleted.
    // Now the numel() may return -1, and will cast to a very large number when
    // compare with a data with unsigned long type, this will make checking
    // failed, so it's a temporary solution to deal with this problem.
252
    PADDLE_ENFORCE_LE(
253 254
        numel() * static_cast<int64_t>(SizeOf(dtype())),
        static_cast<int64_t>(holder->size()),
255 256 257
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
  }
258
  holder_ = holder;
259 260 261
}

void DenseTensor::ResetHolderWithType(
262 263
    const std::shared_ptr<pten::Allocation>& holder,
    paddle::framework::proto::VarType::Type type) {
264 265 266 267
  set_type(type);
  ResetHolder(holder);
}

268
void DenseTensor::set_type(paddle::framework::proto::VarType::Type type) {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  meta_.dtype = TransToPtenDataType(type);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                size_t requested_size) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());
  if (requested_size && (requested_size > size)) {
    size = requested_size;
  }

  /* some versions of boost::variant don't have operator!= */
290 291 292 293
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + meta_.offset) {
    holder_.reset();
    holder_ = paddle::memory::AllocShared(place, size);
294 295
    meta_.offset = 0;
  }
296
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
297
                                 meta_.offset);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                size_t requested_size) {
  return mutable_data(place, type(), requested_size);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                const paddle::platform::Stream& stream) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());

  /* some versions of boost::variant don't have operator!= */
320 321
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + meta_.offset ||
322
      !(paddle::platform::is_gpu_place(place) &&
323 324 325
        paddle::memory::InSameStream(holder_, stream))) {
    holder_.reset();
    holder_ = paddle::memory::AllocShared(place, size, stream);
326 327
    meta_.offset = 0;
  }
328
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
329
                                 meta_.offset);
330 331 332 333 334 335 336 337 338 339 340 341
}

/* @jim19930609: The following "mutable_data" only supports specific dtypes
   defined in OpProto. This part need another clean up once the data type across
   Fluid
   and Pten get unified.
   */
template <typename T>
inline T* DenseTensor::mutable_data(const DDim& dims,
                                    const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
342
  meta_.dims = dims;
343 344 345 346 347 348 349 350 351 352 353
  return mutable_data<T>(place, requested_size);
}

template <typename T>
inline T* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
  return reinterpret_cast<T*>(mutable_data(
      place, paddle::framework::DataTypeTrait<T>::DataType(), requested_size));
}

354
void DenseTensor::ShareBufferWith(const DenseTensor& tensor) {
355
  holder_ = tensor.holder_;
356
  meta_.offset = tensor.meta().offset;
357
  meta_.dtype = tensor.dtype();
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371
#define LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(dtype) \
  template dtype* DenseTensor::mutable_data(         \
      const DDim& dims,                              \
      const paddle::platform::Place& place,          \
      size_t requested_size);                        \
  template dtype* DenseTensor::mutable_data(         \
      const paddle::platform::Place& place, size_t requested_size);

LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(bool)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(uint8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int16_t)
372
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int32_t)
373 374 375 376 377 378 379 380 381 382 383 384 385 386
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int64_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(float)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(double)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128)

#undef LEGACY_DATA_MEMBER_FUNC_INSTANTIATION

/* ------------------------------ */
/*   From framework::LoDTensor    */
/* ------------------------------ */

387 388 389 390 391 392 393
DenseTensor::DenseTensor(intrusive_ptr<Storage> storage,
                         const DenseTensorMeta& meta)
    : meta_(meta), holder_(storage->move_data_shared()) {}

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta)
    : meta_(std::move(meta)), holder_(storage->move_data_shared()) {}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
DenseTensor::DenseTensor(const LoD& lod) : DenseTensor() { meta_.lod = lod; }

void DenseTensor::set_lod(const LoD& lod) { meta_.lod = lod; }

LoD* DenseTensor::mutable_lod() { return &meta_.lod; }

std::pair<size_t, size_t> DenseTensor::lod_element(size_t level,
                                                   size_t elem) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  PADDLE_ENFORCE_LT(elem,
                    NumElements(level),
                    paddle::platform::errors::InvalidArgument(
                        "The input element of LoD is invalid, it should be "
                        "less than the number of elements in its level."
                        "The input element is %zu, the number of elements in "
                        "its level is %zu.",
                        elem,
                        NumElements(level)));

  return std::make_pair((meta_.lod)[level][elem], (meta_.lod)[level][elem + 1]);
}

size_t DenseTensor::NumLevels() const { return meta_.lod.size(); }

size_t DenseTensor::NumElements(size_t level) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  // the last offset is the end of last element
  return (meta_.lod)[level].size() - 1;
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
DenseTensor& DenseTensor::Resize(const DDim& dims) {
  meta_.dims = dims;
  return *this;
}

DenseTensor DenseTensor::Slice(int64_t begin_idx, int64_t end_idx) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(begin_idx,
                    0,
                    paddle::platform::errors::OutOfRange(
                        "The start row index must be greater than 0."
                        "But received the start index is d%.",
                        begin_idx));
  PADDLE_ENFORCE_LE(end_idx,
                    meta_.dims[0],
                    paddle::platform::errors::OutOfRange(
                        "The end row index is out of bound."));
  PADDLE_ENFORCE_LT(
      begin_idx,
      end_idx,
      paddle::platform::errors::InvalidArgument(
          "The start row index must be less than the end row index."
          "But received the start index = %d, the end index = %d.",
          begin_idx,
          end_idx));

  if (meta_.dims[0] == 1) {
    return *this;
  } else {
    size_t base = numel() / meta_.dims[0];
    DenseTensor dst;
471 472
    dst.holder_ = holder_;
    dst.set_layout(meta_.layout);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    dst.meta_.dtype = meta_.dtype;
    DDim dst_dims = meta_.dims;
    dst_dims[0] = end_idx - begin_idx;
    dst.Resize(dst_dims);
    dst.meta_.offset = meta_.offset + begin_idx * base * SizeOf(dtype());
    return dst;
  }
}

std::vector<DenseTensor> DenseTensor::Split(int64_t split_size,
                                            int64_t axis) const {
  check_memory_size();

  PADDLE_ENFORCE_GE(meta_.dims.size(),
                    0,
                    paddle::platform::errors::OutOfRange(
                        "split expects at least a 1-dimensional tensor"));

  PADDLE_ENFORCE_GE(
      split_size,
      0,
      paddle::platform::errors::OutOfRange(
          "split expects split_size be non-negative, but got split_size is %d",
          split_size));

  int64_t numel_size = meta_.dims[axis];

  int64_t num_splits = 1;
  if (split_size != 0) {
    num_splits =
        std::max<int64_t>((numel_size + split_size - 1) / split_size, 1);
  }

  std::vector<DenseTensor> splits(num_splits);
  int64_t last_split_size = split_size - (split_size * num_splits - numel_size);

  for (int64_t i = 0; i < num_splits; ++i) {
    int64_t length = i < num_splits - 1 ? split_size : last_split_size;
    splits[i] = Slice(i * split_size, i * split_size + length);
  }
  return splits;
}

std::vector<DenseTensor> DenseTensor::Chunk(int64_t chunks,
                                            int64_t axis) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(meta_.dims.size(),
                    0,
                    paddle::platform::errors::OutOfRange(
                        "split expects at least a 1-dimensional tensor"));
  PADDLE_ENFORCE_GE(
      chunks,
      0,
      paddle::platform::errors::OutOfRange(
          "chunks expects to be greater than 0, but got chunks is %d", chunks));

  int64_t numel_size = meta_.dims[axis];
  int64_t split_size = (numel_size + chunks - 1) / chunks;
  return Split(split_size, axis);
}

DenseTensor& DenseTensor::ShareDataWith(const DenseTensor& src) {
  src.check_memory_size();
  // Preserve LoD
  auto lod = meta_.lod;
  *this = src;
  meta_.lod = lod;
  return *this;
}

DenseTensor& DenseTensor::ShareInplaceVersionCounterWith(
    const DenseTensor& src) {
  PADDLE_ENFORCE_NOT_NULL(
      inplace_version_counter_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor does not hold inplace_version_counter_."));

  inplace_version_counter_ = src.inplace_version_counter_;
  return *this;
}

554
}  // namespace pten