dense_tensor.cc 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/core/dense_tensor.h"

17 18 19 20 21
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/float16.h"

22 23 24
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/convert_utils.h"

25 26 27 28 29
namespace pten {

DenseTensor::DenseTensor(const std::shared_ptr<Allocator>& a,
                         const DenseTensorMeta& meta)
    : meta_(meta),
30
      storage_(make_intrusive<TensorStorage>(a, SizeOf(dtype()) * numel())) {}
31 32 33 34

DenseTensor::DenseTensor(const std::shared_ptr<Allocator>& a,
                         DenseTensorMeta&& meta)
    : meta_(std::move(meta)),
35
      storage_(make_intrusive<TensorStorage>(a, SizeOf(dtype()) * numel())) {}
36 37 38 39 40 41 42 43

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage,
                         const DenseTensorMeta& meta)
    : meta_(meta), storage_(std::move(storage)) {}

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta)
    : meta_(std::move(meta)), storage_(std::move(storage)) {}

44 45 46 47 48 49 50 51 52 53 54 55 56
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
  if (other.storage_ != nullptr && other.storage_->data_shared()) {
    storage_->set_data_shared(other.storage_->data_shared());
  }

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
}
57

58 59
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
60 61 62 63 64 65 66 67 68 69
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
  if (other.storage_ != nullptr && other.storage_->data_shared()) {
    storage_->set_data_shared(other.storage_->data_shared());
  }
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
70 71 72
  return *this;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
  return storage_.get() == b.storage_.get() && storage_.get() != nullptr;
}

void* DenseTensor::mutable_data(size_t request_bytes) {
  PADDLE_ENFORCE(
      valid(),
      paddle::platform::errors::PreconditionNotMet(
          "The meta data must be valid when call the mutable data function."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
93
  size_t bytes = numel() * SizeOf(dtype());
94 95 96 97 98 99 100 101 102 103
  if (request_bytes) {
    PADDLE_ENFORCE_GE(request_bytes,
                      bytes,
                      paddle::platform::errors::InvalidArgument(
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          request_bytes,
                          bytes));
    bytes = request_bytes;
  }
104
  if (storage_->size() < bytes + meta_.offset || storage_->size() == 0) {
105 106
    VLOG(10) << "mutbale data realloc, original size: " << storage_->size()
             << ", new size: " << bytes;
107
    storage_->Realloc(bytes);
108
    meta_.offset = 0;
109
  }
110 111
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
112 113 114 115
}

template <typename T>
T* DenseTensor::mutable_data() {
116 117 118
  // In order to be compatible with the original Tensor design and
  // execution system, we have to reset the datatype in mutable_data<T>.
  // When the compatibility phase is over in the future, we can delete it
119
  if (meta_.dtype == DataType::UNDEFINED) {
120 121
    VLOG(10) << "change data type in mutbale_data, target dtype - "
             << paddle::experimental::CppTypeToDataType<T>::Type();
122
    const_cast<DataType&>(meta_.dtype) =
123 124
        paddle::experimental::CppTypeToDataType<T>::Type();
  }
125
  PADDLE_ENFORCE(
126
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
127
      paddle::platform::errors::InvalidArgument(
128 129 130
          "The type of data (%d) we are trying to retrieve does not match the "
          "type of data currently contained in the container (%d).",
          static_cast<int>(paddle::experimental::CppTypeToDataType<T>::Type()),
131
          static_cast<int>(dtype())));
132 133 134 135 136
  return static_cast<T*>(mutable_data());
}

template <typename T>
const T* DenseTensor::data() const {
137
  check_memory_size();
138
  PADDLE_ENFORCE(
139
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
140
      paddle::platform::errors::InvalidArgument(
141 142 143 144 145
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
      paddle::platform::errors::InvalidArgument(
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
  return reinterpret_cast<T*>(data());
}

161
void* DenseTensor::data() {
162 163 164 165
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
166 167
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
168 169
}

170
const void* DenseTensor::data() const {
171 172 173 174
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
175 176
  return reinterpret_cast<const void*>(
      reinterpret_cast<uintptr_t>(storage_->data()) + meta_.offset);
177 178
}

179 180 181 182 183 184
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
                 paddle::platform::errors::InvalidArgument(
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
185 186
}

187 188 189 190 191 192 193 194 195 196
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
197
void DenseTensor::Resize(const DDim& dims) {
石晓伟 已提交
198
  meta_.dims = dims;
199 200 201
  if (storage_ != nullptr) {
    mutable_data();
  }
石晓伟 已提交
202 203
}

204 205
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

206 207 208 209
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template dtype* DenseTensor::mutable_data();     \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16);
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128);

#undef DATA_MEMBER_FUNC_INSTANTIATION

229 230 231 232
/* --------------------------- */
/*   From framework::Tensor    */
/* --------------------------- */
DenseTensor::DenseTensor() {
233 234
  storage_ = make_intrusive<paddle::experimental::SharedStorage>(
      paddle::platform::CPUPlace());
235 236 237 238 239 240
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = paddle::experimental::DataType::FLOAT32;
  meta_.offset = 0;
}

DenseTensor::DenseTensor(const paddle::framework::proto::VarType::Type& dtype) {
241 242
  storage_ = make_intrusive<paddle::experimental::SharedStorage>(
      paddle::platform::CPUPlace());
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = TransToPtenDataType(dtype);
  meta_.offset = 0;
}

size_t DenseTensor::memory_size() const {
  if (storage_ == nullptr || storage_->data_shared() == nullptr) {
    return 0UL;
  }

  return storage_->data_shared()->size() - meta_.offset;
}

void DenseTensor::check_memory_size() const {
  PADDLE_ENFORCE_NOT_NULL(storage_,
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  PADDLE_ENFORCE_NOT_NULL(storage_->data_shared(),
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  size_t size = numel() * SizeOf(dtype());

  PADDLE_ENFORCE_LE(
      size,
      memory_size(),
      paddle::platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
          "But received  Tensor's dimension is d%, memory's size is %d.",
          size,
          memory_size()));
}

const paddle::platform::Place& DenseTensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor not initialized yet when Tensor::place() is called."));
  return storage_->place();
}

paddle::framework::proto::VarType::Type DenseTensor::type() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor not initialized yet when Tensor::type() is called."));
  return TransToProtoVarType(meta_.dtype);
}

paddle::framework::proto::VarType::Type DenseTensor::saved_type() const {
  return TransToProtoVarType(meta_.dtype);
}

void DenseTensor::set_layout(const paddle::framework::DataLayout layout) {
  meta_.layout = layout;
}

void DenseTensor::ResetHolder(
    const std::shared_ptr<paddle::memory::Allocation>& holder) {
  PADDLE_ENFORCE_EQ(
      meta_.offset,
      0,
      paddle::platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));

311 312 313 314
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
315 316 317 318

  if (storage_->data_shared()) {
    PADDLE_ENFORCE_LE(
        numel() * SizeOf(dtype()) + meta_.offset,
319
        holder->size(),
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
  }

  storage_->set_data_shared(holder);
}

void DenseTensor::ResetHolderWithType(
    const std::shared_ptr<paddle::memory::Allocation>& holder,
    const paddle::framework::proto::VarType::Type& type) {
  set_type(type);
  ResetHolder(holder);
}

void DenseTensor::set_type(
    const paddle::framework::proto::VarType::Type& type) {
  meta_.dtype = TransToPtenDataType(type);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                size_t requested_size) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());
  if (requested_size && (requested_size > size)) {
    size = requested_size;
  }

  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(place);
  }

  /* some versions of boost::variant don't have operator!= */
  if (storage_->data_shared() == nullptr ||
      !(storage_->data_shared()->place() == place) ||
      storage_->data_shared()->size() < size + meta_.offset) {
    storage_->Clear();
    storage_->set_data_shared(paddle::memory::AllocShared(place, size));
    meta_.offset = 0;
  }
368 369
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                size_t requested_size) {
  return mutable_data(place, type(), requested_size);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                const paddle::platform::Stream& stream) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());

391 392 393 394
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(place);
  }

395
  /* some versions of boost::variant don't have operator!= */
396
  if (storage_->data_shared() == nullptr ||
397 398 399 400 401 402 403 404
      !(storage_->data_shared()->place() == place) ||
      storage_->data_shared()->size() < size + meta_.offset ||
      !(paddle::platform::is_gpu_place(place) &&
        paddle::memory::InSameStream(storage_->data_shared(), stream))) {
    storage_->Clear();
    storage_->set_data_shared(paddle::memory::AllocShared(place, size, stream));
    meta_.offset = 0;
  }
405 406
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
407 408 409 410 411 412 413 414 415 416 417 418
}

/* @jim19930609: The following "mutable_data" only supports specific dtypes
   defined in OpProto. This part need another clean up once the data type across
   Fluid
   and Pten get unified.
   */
template <typename T>
inline T* DenseTensor::mutable_data(const DDim& dims,
                                    const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
419
  meta_.dims = dims;
420 421 422 423 424 425 426 427 428 429 430
  return mutable_data<T>(place, requested_size);
}

template <typename T>
inline T* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
  return reinterpret_cast<T*>(mutable_data(
      place, paddle::framework::DataTypeTrait<T>::DataType(), requested_size));
}

431 432 433 434 435 436 437
void DenseTensor::ShareBufferWith(const DenseTensor& tensor) {
  if (storage_ != nullptr && tensor.storage_ != nullptr) {
    storage_->set_data_shared(tensor.storage_->data_shared());
  }
  meta_.offset = tensor.meta().offset;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#define LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(dtype) \
  template dtype* DenseTensor::mutable_data(         \
      const DDim& dims,                              \
      const paddle::platform::Place& place,          \
      size_t requested_size);                        \
  template dtype* DenseTensor::mutable_data(         \
      const paddle::platform::Place& place, size_t requested_size);

LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(bool)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(uint8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int16_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int64_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(float)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(double)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128)

#undef LEGACY_DATA_MEMBER_FUNC_INSTANTIATION

/* ------------------------------ */
/*   From framework::LoDTensor    */
/* ------------------------------ */

DenseTensor::DenseTensor(const LoD& lod) : DenseTensor() { meta_.lod = lod; }

void DenseTensor::set_lod(const LoD& lod) { meta_.lod = lod; }

LoD* DenseTensor::mutable_lod() { return &meta_.lod; }

std::pair<size_t, size_t> DenseTensor::lod_element(size_t level,
                                                   size_t elem) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  PADDLE_ENFORCE_LT(elem,
                    NumElements(level),
                    paddle::platform::errors::InvalidArgument(
                        "The input element of LoD is invalid, it should be "
                        "less than the number of elements in its level."
                        "The input element is %zu, the number of elements in "
                        "its level is %zu.",
                        elem,
                        NumElements(level)));

  return std::make_pair((meta_.lod)[level][elem], (meta_.lod)[level][elem + 1]);
}

size_t DenseTensor::NumLevels() const { return meta_.lod.size(); }

size_t DenseTensor::NumElements(size_t level) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  // the last offset is the end of last element
  return (meta_.lod)[level].size() - 1;
}

511
}  // namespace pten