transforms.py 40.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37 38
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

__all__ = [
39 40 41 42 43
    "BaseTransform", "Compose", "Resize", "RandomResizedCrop", "CenterCrop",
    "RandomHorizontalFlip", "RandomVerticalFlip", "Transpose", "Normalize",
    "BrightnessTransform", "SaturationTransform", "ContrastTransform",
    "HueTransform", "ColorJitter", "RandomCrop", "Pad", "RandomRotation",
    "Grayscale", "ToTensor"
L
LielinJiang 已提交
44 45 46
]


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
        transforms (list): List of transforms to compose.

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

99 100
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self, transforms):
        self.transforms = transforms

114
    def __call__(self, data):
L
LielinJiang 已提交
115 116
        for f in self.transforms:
            try:
117
                data = f(data)
L
LielinJiang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


134 135 136
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
137

138 139 140 141 142 143 144 145 146
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
169 170 171 172 173
    Examples:
    
        .. code-block:: python

            import numpy as np
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
239 240 241

    """

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
            outputs.extend(input[len(self.keys):])

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
282

283 284
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
285

286 287
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
288

289 290
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
291

292 293
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

    Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a paddle.Tensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.

    Args:
        data_format (str, optional): Data format of input img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))

            transform = T.ToTensor()

            tensor = transform(fake_img)

    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
345 346 347 348 349 350 351 352
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
368 369 370 371 372 373

    Examples:
    
        .. code-block:: python

            import numpy as np
374
            from PIL import Image
375
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
376 377 378

            transform = Resize(size=224)

379
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
380 381

            fake_img = transform(fake_img)
382
            print(fake_img.size)
L
LielinJiang 已提交
383 384
    """

385 386
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
387 388 389 390 391
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

392
    def _apply_image(self, img):
L
LielinJiang 已提交
393 394 395
        return F.resize(img, self.size, self.interpolation)


396
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
397 398 399 400 401 402
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
403
        size (int|list|tuple): Target size of output image, with (height, width) shape.
L
LielinJiang 已提交
404 405
        scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0)
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
421 422 423 424 425 426

    Examples:
    
        .. code-block:: python

            import numpy as np
427
            from PIL import Image
428
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
429 430 431

            transform = RandomResizedCrop(224)

432
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
433 434

            fake_img = transform(fake_img)
435 436
            print(fake_img.size)

L
LielinJiang 已提交
437 438 439
    """

    def __init__(self,
440
                 size,
L
LielinJiang 已提交
441 442
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
443 444 445 446 447
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
448
        else:
449
            self.size = size
L
LielinJiang 已提交
450 451 452 453 454 455
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

456 457
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
458 459 460 461 462 463 464 465 466 467 468
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
469 470 471
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
472 473 474 475 476 477 478 479 480

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
481 482
        else:
            # return whole image
L
LielinJiang 已提交
483 484
            w = width
            h = height
485 486 487
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
488

489 490
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
491

492
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
493 494 495
        return F.resize(cropped_img, self.size, self.interpolation)


496
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
497 498 499
    """Crops the given the input data at the center.

    Args:
500 501 502
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

L
LielinJiang 已提交
503 504 505 506 507
    Examples:
    
        .. code-block:: python

            import numpy as np
508
            from PIL import Image
509
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
510 511 512

            transform = CenterCrop(224)

513
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
514 515

            fake_img = transform(fake_img)
516
            print(fake_img.size)
L
LielinJiang 已提交
517 518
    """

519 520 521 522
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
523
        else:
524
            self.size = size
L
LielinJiang 已提交
525

526 527
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
528 529


530
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
531 532 533
    """Horizontally flip the input data randomly with a given probability.

    Args:
534 535
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
536 537 538 539 540 541

    Examples:
    
        .. code-block:: python

            import numpy as np
542
            from PIL import Image
543
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
544 545 546

            transform = RandomHorizontalFlip(224)

547
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
548 549

            fake_img = transform(fake_img)
550
            print(fake_img.size)
L
LielinJiang 已提交
551 552
    """

553 554
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
L
LielinJiang 已提交
555 556
        self.prob = prob

557 558 559
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
560 561 562
        return img


563
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
564 565 566
    """Vertically flip the input data randomly with a given probability.

    Args:
567 568
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
569 570 571 572 573 574

    Examples:
    
        .. code-block:: python

            import numpy as np
575
            from PIL import Image
576
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
577 578 579

            transform = RandomVerticalFlip(224)

580
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
581 582

            fake_img = transform(fake_img)
583 584
            print(fake_img.size)

L
LielinJiang 已提交
585 586
    """

587 588
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
L
LielinJiang 已提交
589 590
        self.prob = prob

591 592 593
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
594 595 596
        return img


597
class Normalize(BaseTransform):
L
LielinJiang 已提交
598 599 600 601 602 603 604 605
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
        mean (int|float|list): Sequence of means for each channel.
        std (int|float|list): Sequence of standard deviations for each channel.
606 607 608 609 610
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
611 612 613 614 615
    Examples:
    
        .. code-block:: python

            import numpy as np
616
            from PIL import Image
617
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
618

619 620 621
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
622

623
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
624 625 626

            fake_img = normalize(fake_img)
            print(fake_img.shape)
627
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
628 629 630
    
    """

631 632 633 634 635 636 637
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
638 639 640 641
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
642
            std = [std, std, std]
L
LielinJiang 已提交
643

644 645 646 647
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
648

649 650 651
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
652 653


654 655
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
656 657
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
658
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
659 660

    Args:
661 662 663
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
664 665 666 667 668
    Examples:
    
        .. code-block:: python

            import numpy as np
669 670
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
671

672
            transform = Transpose()
L
LielinJiang 已提交
673

674
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
675 676 677 678 679 680

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

681 682 683 684 685 686 687
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
688

689
        return img.transpose(self.order)
L
LielinJiang 已提交
690 691


692
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
693 694 695 696 697
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
698
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
699 700 701 702 703 704

    Examples:
    
        .. code-block:: python

            import numpy as np
705
            from PIL import Image
706
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
707 708 709

            transform = BrightnessTransform(0.4)

710
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
711 712

            fake_img = transform(fake_img)
713
            
L
LielinJiang 已提交
714 715
    """

716 717 718
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
719

720 721
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
722 723
            return img

724 725
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
726 727


728
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
729 730 731 732 733
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
734
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
735 736 737 738 739 740

    Examples:
    
        .. code-block:: python

            import numpy as np
741
            from PIL import Image
742
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
743 744 745

            transform = ContrastTransform(0.4)

746
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
747 748

            fake_img = transform(fake_img)
749

L
LielinJiang 已提交
750 751
    """

752 753
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
754 755
        if value < 0:
            raise ValueError("contrast value should be non-negative")
756
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
757

758 759
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
760 761
            return img

762 763
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
764 765


766
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
767 768 769 770 771
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
772
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
773 774 775 776 777 778

    Examples:
    
        .. code-block:: python

            import numpy as np
779
            from PIL import Image
780
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
781 782 783

            transform = SaturationTransform(0.4)

784
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
785 786
        
            fake_img = transform(fake_img)
787

L
LielinJiang 已提交
788 789
    """

790 791 792
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
793

794 795
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
796 797
            return img

798 799
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
800

L
LielinJiang 已提交
801

802
class HueTransform(BaseTransform):
L
LielinJiang 已提交
803 804 805 806 807
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
808
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
809 810 811 812 813 814

    Examples:
    
        .. code-block:: python

            import numpy as np
815
            from PIL import Image
816
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
817 818 819

            transform = HueTransform(0.4)

820
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
821 822

            fake_img = transform(fake_img)
823

L
LielinJiang 已提交
824 825
    """

826 827 828 829
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
830

831 832
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
833 834
            return img

835 836
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
837 838


839
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
840 841 842 843
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
        brightness: How much to jitter brightness.
L
LielinJiang 已提交
844
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
L
LielinJiang 已提交
845
        contrast: How much to jitter contrast.
L
LielinJiang 已提交
846
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
L
LielinJiang 已提交
847
        saturation: How much to jitter saturation.
L
LielinJiang 已提交
848
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
L
LielinJiang 已提交
849
        hue: How much to jitter hue.
L
LielinJiang 已提交
850
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
851
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
852 853 854 855 856 857

    Examples:
    
        .. code-block:: python

            import numpy as np
858
            from PIL import Image
859
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
860

861
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
862

863
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
864 865

            fake_img = transform(fake_img)
866

L
LielinJiang 已提交
867 868
    """

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
886
        transforms = []
887 888 889 890 891 892 893 894 895 896 897 898

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
899 900

        random.shuffle(transforms)
901
        transform = Compose(transforms)
L
LielinJiang 已提交
902

903
        return transform
L
LielinJiang 已提交
904

905 906 907 908
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
909

910 911 912 913 914 915 916 917 918
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
919 920 921 922 923 924 925 926 927 928 929
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
930 931
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
932 933 934 935 936
    Examples:
    
        .. code-block:: python

            import numpy as np
937
            from PIL import Image
938
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
939 940 941

            transform = RandomCrop(224)

942
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
943 944

            fake_img = transform(fake_img)
945
            print(fake_img.size)
L
LielinJiang 已提交
946 947
    """

948 949 950 951 952 953 954 955
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
956 957 958 959 960 961
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
962 963
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
964

965
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
966 967 968
        """Get parameters for ``crop`` for a random crop.

        Args:
969
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
970 971 972 973 974
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
975
        w, h = _get_image_size(img)
L
LielinJiang 已提交
976 977 978 979
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

980 981
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
982 983
        return i, j, th, tw

984
    def _apply_image(self, img):
L
LielinJiang 已提交
985 986
        """
        Args:
987
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
988

989 990
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
991
        """
992 993 994 995
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
996 997

        # pad the width if needed
998 999 1000
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1001
        # pad the height if needed
1002 1003 1004
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1005

1006
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1007

1008
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1009 1010


1011
class Pad(BaseTransform):
L
LielinJiang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1032 1033
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1034 1035 1036 1037 1038
    Examples:
    
        .. code-block:: python

            import numpy as np
1039
            from PIL import Image
1040
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1041 1042 1043

            transform = Pad(2)

1044
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1045 1046

            fake_img = transform(fake_img)
1047
            print(fake_img.size)
L
LielinJiang 已提交
1048 1049
    """

1050
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1051 1052 1053
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1054 1055 1056 1057 1058 1059 1060

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1061 1062 1063 1064
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1065
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1066 1067 1068 1069
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1070
    def _apply_image(self, img):
L
LielinJiang 已提交
1071 1072
        """
        Args:
1073 1074
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1075
        Returns:
1076
            PIL Image: Padded image.
L
LielinJiang 已提交
1077 1078 1079 1080
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1081
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1082 1083 1084 1085 1086 1087
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
        resample (int|str, optional): An optional resampling filter. If omitted, or if the 
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1099 1100 1101 1102 1103 1104 1105
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1106 1107
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1108 1109 1110 1111 1112
    Examples:
    
        .. code-block:: python

            import numpy as np
1113 1114
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1115

1116
            transform = RandomRotation(90)
L
LielinJiang 已提交
1117

1118
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1119 1120

            fake_img = transform(fake_img)
1121
            print(fake_img.size)
L
LielinJiang 已提交
1122 1123
    """

1124 1125 1126 1127 1128 1129 1130
    def __init__(self,
                 degrees,
                 resample=False,
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1142 1143
        super(RandomRotation, self).__init__(keys)
        self.resample = resample
L
LielinJiang 已提交
1144 1145
        self.expand = expand
        self.center = center
1146
        self.fill = fill
L
LielinJiang 已提交
1147

1148
    def _get_param(self, degrees):
L
LielinJiang 已提交
1149 1150 1151 1152
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1153
    def _apply_image(self, img):
L
LielinJiang 已提交
1154
        """
1155 1156 1157
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1158
        Returns:
1159
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1160 1161
        """

1162
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1163

1164 1165
        return F.rotate(img, angle, self.resample, self.expand, self.center,
                        self.fill)
L
LielinJiang 已提交
1166 1167


1168
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1169 1170 1171
    """Converts image to grayscale.

    Args:
1172 1173 1174
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    Returns:
        CV Image: Grayscale version of the input.
        - If output_channels == 1 : returned image is single channel
        - If output_channels == 3 : returned image is 3 channel with r == g == b

    Examples:
    
        .. code-block:: python

            import numpy as np
1185
            from PIL import Image
1186
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1187 1188 1189

            transform = Grayscale()

1190
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1191 1192

            fake_img = transform(fake_img)
1193
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1194 1195
    """

1196 1197 1198
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1199

1200
    def _apply_image(self, img):
L
LielinJiang 已提交
1201 1202
        """
        Args:
1203 1204
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1205
        Returns:
1206
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1207
        """
1208
        return F.to_grayscale(img, self.num_output_channels)