cross_entropy_op.h 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/operators/math.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/platform/for_range.h"
Q
Qiao Longfei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27
using Tensor = framework::Tensor;

28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class CrossEntropyOpKernel : public framework::OpKernel<T> {
30
 public:
D
dongzhihong 已提交
31
  void Compute(const framework::ExecutionContext& ctx) const override {
32 33 34
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* y = ctx.Output<Tensor>("Y");
35
    y->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
36

37
    int rank = x->dims().size();
F
fengjiayi 已提交
38 39 40
    Tensor x_2d = framework::ReshapeToMatrix(*x, rank - 1);
    Tensor labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
    Tensor y_2d = framework::ReshapeToMatrix(*y, rank - 1);
41

42
    int axis_dim = x->dims()[rank - 1];
43
    math::CrossEntropyFunctor<DeviceContext, T>()(
44
        ctx.template device_context<DeviceContext>(), &y_2d, &x_2d, &labels_2d,
45
        ctx.Attr<bool>("soft_label"), ctx.Attr<int>("ignore_index"), axis_dim);
Y
Yan Chunwei 已提交
46 47 48
  }
};

49
template <typename T>
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
class XeSoftlabelGradFunctor {
 public:
  XeSoftlabelGradFunctor(T* dx,
                         const T* dy,     // NOLINT
                         const T* x,      // NOLINT
                         const T* label,  // NOLINT
                         size_t num_classes)
      : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {}

  HOSTDEVICE void operator()(size_t i) {
    auto row_ids = i / num_classes_;
    dx_[i] = -label_[i] * dy_[row_ids] / x_[i];
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const T* label_;
  size_t num_classes_;
};

template <typename T>
class XeGradFunctor {
 public:
  XeGradFunctor(T* dx,
                const T* dy,           // NOLINT
                const T* x,            // NOLINT
                const int64_t* label,  // NOLINT
79 80 81 82 83 84 85
                size_t num_classes, size_t ignore_index)
      : dx_(dx),
        dy_(dy),
        x_(x),
        label_(label),
        num_classes_(num_classes),
        ignore_index_(ignore_index) {}
86

Y
Yu Yang 已提交
87 88 89 90
  HOSTDEVICE void operator()(size_t sample_id) {
    auto x_is_true_offset = sample_id * num_classes_ + label_[sample_id];
    for (size_t x_offset = sample_id * num_classes_;
         x_offset < (sample_id + 1) * num_classes_; ++x_offset) {
C
chengduoZH 已提交
91 92 93 94
      dx_[x_offset] = (x_offset != x_is_true_offset ||
                       label_[sample_id] == static_cast<int64_t>(ignore_index_))
                          ? static_cast<T>(0)
                          : -dy_[sample_id] / x_[x_offset];
95 96 97 98 99 100 101 102 103
    }
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const int64_t* label_;
  size_t num_classes_;
104
  size_t ignore_index_;
105 106 107
};

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
108
class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
Y
Yan Chunwei 已提交
109
 public:
D
dongzhihong 已提交
110
  void Compute(const framework::ExecutionContext& ctx) const override {
111 112 113 114
    auto* x = ctx.Input<Tensor>("X");
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* label = ctx.Input<Tensor>("Label");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
115
    T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
116

117 118 119 120
    // Following computation only depends on the last dimension size. So it's
    // unnecessary to convert tensors to 2-D views.
    int rank = x->dims().size();
    int64_t class_num = x->dims()[rank - 1];
121
    int64_t ignore_index = ctx.Attr<int>("ignore_index");
122
    if (ctx.Attr<bool>("soft_label")) {
123 124 125 126 127 128 129
      XeSoftlabelGradFunctor<T> functor(dx_data, dy->data<T>(), x->data<T>(),
                                        label->data<T>(),
                                        static_cast<size_t>(class_num));
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dx->numel()));
      for_range(functor);
130
    } else {
131 132 133
      XeGradFunctor<T> functor(
          dx_data, dy->data<T>(), x->data<T>(), label->data<int64_t>(),
          static_cast<size_t>(class_num), static_cast<size_t>(ignore_index));
134 135 136 137
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dy->numel()));
      for_range(functor);
Q
Qiao Longfei 已提交
138 139 140 141
    }
  }
};

S
sneaxiy 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename T>
struct HardLabelCrossEntropyForwardFunctor {
  HardLabelCrossEntropyForwardFunctor(const T* x, T* y, T* match_x,
                                      const int64_t* label,
                                      int64_t ignore_index,
                                      int64_t feature_size)
      : x_(x),
        y_(y),
        match_x_(match_x),
        label_(label),
        ignore_index_(ignore_index),
        feature_size_(feature_size) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    auto label = label_[idx];
    if (label != ignore_index_) {
B
Bai Yifan 已提交
158 159
      PADDLE_ASSERT_MSG(label >= 0 && label < feature_size_,
                        "The label is out of the range.", label);
S
sneaxiy 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
      auto match_x = x_[idx * feature_size_ + label];
      y_[idx] = -math::TolerableValue<T>()(real_log(match_x));
      match_x_[idx] = match_x;
    } else {
      y_[idx] = 0;
      match_x_[idx] = 0;  // any value is ok
    }
  }

  const T* x_;
  T* y_;
  T* match_x_;
  const int64_t* label_;
  int64_t ignore_index_;
  int64_t feature_size_;
};

S
sneaxiy 已提交
177 178
template <typename T>
struct HardLabelCrossEntropyBackwardFunctor {
S
sneaxiy 已提交
179
  HardLabelCrossEntropyBackwardFunctor(T* dx, const T* dy, const T* match_x,
S
sneaxiy 已提交
180 181 182 183 184
                                       const int64_t* label,
                                       int64_t ignore_index,
                                       int64_t feature_size)
      : dx_(dx),
        dy_(dy),
S
sneaxiy 已提交
185
        match_x_(match_x),
S
sneaxiy 已提交
186 187 188 189 190 191 192 193 194
        label_(label),
        ignore_index_(ignore_index),
        feature_size_(feature_size) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    auto row_idx = idx / feature_size_;
    auto col_idx = idx % feature_size_;
    auto label = label_[row_idx];
    if (label == col_idx && label != ignore_index_) {
S
sneaxiy 已提交
195
      dx_[idx] = -dy_[row_idx] / match_x_[row_idx];
S
sneaxiy 已提交
196 197 198 199 200 201 202
    } else {
      dx_[idx] = 0;
    }
  }

  T* dx_;
  const T* dy_;
S
sneaxiy 已提交
203
  const T* match_x_;
S
sneaxiy 已提交
204 205 206 207 208 209 210 211 212
  const int64_t* label_;
  int64_t ignore_index_;
  int64_t feature_size_;
};

template <typename DeviceContext, typename T>
class CrossEntropyOpKernel2 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
213 214
    auto* x = ctx.Input<Tensor>("X");
    auto* label = ctx.Input<Tensor>("Label");
S
sneaxiy 已提交
215
    auto* y = ctx.Output<Tensor>("Y");
S
sneaxiy 已提交
216 217 218 219 220 221 222 223 224 225
    auto* match_x = ctx.Output<Tensor>("MatchX");

    auto& x_dims = x->dims();
    auto feature_size = x_dims[x_dims.size() - 1];
    auto batch_size = framework::product(x->dims()) / feature_size;

    auto* p_x = x->data<T>();
    auto* p_label = label->data<int64_t>();
    auto* p_y = y->mutable_data<T>(ctx.GetPlace());
    auto* p_match_x = match_x->mutable_data<T>(ctx.GetPlace());
S
sneaxiy 已提交
226 227 228

    auto ignore_index = ctx.Attr<int>("ignore_index");

S
sneaxiy 已提交
229 230 231 232
    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(), batch_size);
    for_range(HardLabelCrossEntropyForwardFunctor<T>(
        p_x, p_y, p_match_x, p_label, ignore_index, feature_size));
S
sneaxiy 已提交
233 234 235 236 237 238 239 240 241
  }
};

template <typename DeviceContext, typename T>
class CrossEntropyGradientOpKernel2 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
S
sneaxiy 已提交
242
    auto* match_x = ctx.Input<Tensor>("MatchX");
S
sneaxiy 已提交
243 244 245 246
    auto* label = ctx.Input<Tensor>("Label");

    auto* p_dx = dx->mutable_data<T>(ctx.GetPlace());
    auto* p_dy = dy->data<T>();
S
sneaxiy 已提交
247
    auto* p_match_x = match_x->data<T>();
S
sneaxiy 已提交
248 249 250 251 252 253 254 255 256 257 258
    auto* p_label = label->data<int64_t>();

    int64_t ignore_index = ctx.Attr<int>("ignore_index");
    int rank = dx->dims().size();
    int64_t feature_size = dx->dims()[rank - 1];
    int64_t batch_size = framework::product(dx->dims()) / feature_size;

    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(),
        batch_size * feature_size);
    for_range(HardLabelCrossEntropyBackwardFunctor<T>(
S
sneaxiy 已提交
259
        p_dx, p_dy, p_match_x, p_label, ignore_index, feature_size));
S
sneaxiy 已提交
260 261 262
  }
};

Q
Qiao Longfei 已提交
263 264
}  // namespace operators
}  // namespace paddle