beam_search_op.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15
#include <algorithm>
16
#include <limits>
Y
Yan Chunwei 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
20

Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
23
#include "paddle/fluid/operators/beam_search_op.h"
Y
Yan Chunwei 已提交
24 25 26 27 28

namespace paddle {
namespace operators {

void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
29
                            const framework::LoDTensor &pre_scores,
Y
Yan Chunwei 已提交
30 31
                            framework::LoDTensor *selected_ids,
                            framework::LoDTensor *selected_scores) {
Q
Qiao Longfei 已提交
32 33 34
  auto abs_lod = framework::ToAbsOffset(ids_->lod());
  auto &high_level = abs_lod[lod_level_];

35
  auto items = SelectTopBeamSizeItems(pre_ids, pre_scores);
Q
Qiao Longfei 已提交
36 37 38 39 40 41 42 43
  auto selected_items = ToMap(items, high_level.back());
  VLOG(3) << "selected_items:";
  for (size_t i = 0; i < selected_items.size(); ++i) {
    VLOG(3) << "offset:" << i;
    for (auto &item : selected_items[i]) {
      VLOG(3) << ItemToString(item);
    }
  }
44 45

  PruneEndBeams(pre_ids, &selected_items);
Y
Yan Chunwei 已提交
46 47
  // calculate the output tensor's height
  size_t num_instances = std::accumulate(
Y
Yan Chunwei 已提交
48
      std::begin(selected_items), std::end(selected_items), 0,
Y
Yan Chunwei 已提交
49 50 51 52 53 54 55 56 57
      [](size_t a, std::vector<Item> &b) { return a + b.size(); });
  // the output tensor shape should be [num_instances, 1]
  auto dims = framework::make_ddim(
      std::vector<int64_t>({static_cast<int>(num_instances), 1}));
  selected_ids->Resize(dims);
  selected_scores->Resize(dims);

  std::map<size_t /*offset*/, std::vector<Item>> hash;
  framework::LoD new_lod;
58
  auto *ids_data = selected_ids->mutable_data<int64_t>(platform::CPUPlace());
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72
  auto *scores_data =
      selected_scores->mutable_data<float>(platform::CPUPlace());

  // fill in data
  std::vector<size_t> low_level;
  size_t low_offset = 0;
  for (auto &items : selected_items) {
    low_level.push_back(low_offset);
    for (auto &item : items) {
      ids_data[low_offset] = item.id;
      scores_data[low_offset] = item.score;
      low_offset++;
    }
  }
Y
Yan Chunwei 已提交
73 74
  low_level.push_back(low_offset);

Y
Yan Chunwei 已提交
75 76 77 78
  // fill lod
  framework::LoD lod(2);
  lod[0].assign(high_level.begin(), high_level.end());
  lod[1].assign(low_level.begin(), low_level.end());
Q
Qiao Longfei 已提交
79 80 81
  if (!framework::CheckLoD(lod)) {
    PADDLE_THROW("lod %s is not right", framework::LoDToString(lod));
  }
Y
Yan Chunwei 已提交
82 83 84 85
  selected_ids->set_lod(lod);
  selected_scores->set_lod(lod);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void BeamSearch::PruneEndBeams(const framework::LoDTensor &pre_ids,
                               std::vector<std::vector<Item>> *items) {
  auto *pre_ids_data = pre_ids.data<int64_t>();
  auto abs_lod = framework::ToAbsOffset(ids_->lod());
  auto &high_level = abs_lod[lod_level_];
  for (size_t src_idx = 0; src_idx < high_level.size(); ++src_idx) {
    size_t src_prefix_start = high_level[src_idx];
    size_t src_prefix_end = high_level[src_idx + 1];
    bool finish_flag = true;
    for (size_t offset = src_prefix_start; offset < src_prefix_end; offset++) {
      for (auto &item : items->at(offset)) {
        if (item.id != static_cast<size_t>(end_id_) ||
            pre_ids_data[offset] != end_id_) {
          finish_flag = false;
          break;
        }
      }
      if (!finish_flag) break;
    }
    if (finish_flag) {  // all branchs of the beam (source sentence) end and
                        // prune this beam
      for (size_t offset = src_prefix_start; offset < src_prefix_end; offset++)
        items->at(offset).clear();
    }
  }
}

Y
Yan Chunwei 已提交
113 114
int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids,
                                     std::vector<std::vector<Item>> *items) {
115
  auto *pre_ids_data = pre_ids.data<int64_t>();
Y
Yan Chunwei 已提交
116

Y
Yan Chunwei 已提交
117
  int res = 0;
Y
Yan Chunwei 已提交
118 119 120 121
  for (size_t offset = 0; offset < items->size(); offset++) {
    auto prefix_id = pre_ids_data[offset];
    if (prefix_id == end_id_) {
      items->at(offset).clear();
Y
Yan Chunwei 已提交
122 123
    } else {
      res++;
Y
Yan Chunwei 已提交
124 125
    }
  }
Y
Yan Chunwei 已提交
126 127

  return res;
Y
Yan Chunwei 已提交
128 129 130
}

std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
Q
Qiao Longfei 已提交
131
    const std::vector<std::vector<Item>> &items, size_t element_num) {
Y
Yan Chunwei 已提交
132
  std::vector<std::vector<Item>> result;
Q
Qiao Longfei 已提交
133
  result.resize(element_num);
Y
Yan Chunwei 已提交
134 135 136 137 138 139 140 141
  for (auto &entries : items) {
    for (const auto &item : entries) {
      result[item.offset].push_back(item);
    }
  }
  return result;
}

142 143 144
std::vector<std::vector<BeamSearch::Item>> BeamSearch::SelectTopBeamSizeItems(
    const framework::LoDTensor &pre_ids,
    const framework::LoDTensor &pre_scores) {
Y
Yan Chunwei 已提交
145 146 147 148
  std::vector<std::vector<Item>> result;
  std::vector<Item> items;
  // for each source sentence, select the top beam_size items across all
  // candidate sets.
149
  while (NextItemSet(pre_ids, pre_scores, &items)) {
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159 160 161
    std::nth_element(std::begin(items), std::begin(items) + beam_size_,
                     std::end(items), [](const Item &a, const Item &b) {
                       // TODO(superjom) make score's comparation customizable.
                       // partial sort in descending order
                       return a.score > b.score;
                     });
    // prune the top beam_size items.
    if (items.size() > beam_size_) {
      items.resize(beam_size_);
    }
    result.emplace_back(items);
  }
Q
Qiao Longfei 已提交
162 163 164 165 166 167 168 169
  VLOG(3) << "SelectTopBeamSizeItems result size " << result.size();
  for (auto &items : result) {
    VLOG(3) << "item set:";
    for (auto &item : items) {
      VLOG(3) << ItemToString(item);
    }
  }

Y
Yan Chunwei 已提交
170 171 172 173
  return result;
}

// the candidates of a source
174 175 176
bool BeamSearch::NextItemSet(const framework::LoDTensor &pre_ids,
                             const framework::LoDTensor &pre_scores,
                             std::vector<BeamSearch::Item> *items) {
Y
Yan Chunwei 已提交
177 178 179 180 181 182 183 184 185
  if (sent_offset_ >= ids_->NumElements(lod_level_)) {
    return false;
  }
  // find the current candidates
  auto ids = *ids_;
  auto scores = *scores_;

  auto abs_lod = framework::ToAbsOffset(ids.lod());

186
  auto *ids_data = ids.data<int64_t>();
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193
  auto *scores_data = scores.data<float>();

  size_t instance_dim = 1;
  for (int i = 1; i < ids.dims().size(); i++) {
    instance_dim *= ids.dims()[i];
  }

194 195
  auto *pre_ids_data = pre_ids.data<int64_t>();
  auto *pre_scores_data = pre_scores.data<float>();
Y
Yan Chunwei 已提交
196 197 198 199
  items->clear();
  items->reserve(framework::product(ids.dims()));
  for (size_t offset = abs_lod[lod_level_][sent_offset_];
       offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) {
200 201 202 203 204 205 206 207 208 209 210 211 212
    auto pre_id = pre_ids_data[offset];
    auto pre_score = pre_scores_data[offset];
    if (pre_id == end_id_) {
      // Allocate all probability mass to eos_id for finished branchs and the
      // other
      // candidate ids can be ignored.
      items->emplace_back(offset, end_id_, pre_score);
    } else {
      for (size_t d = 0; d < instance_dim; d++) {
        const size_t dim_offset = offset * instance_dim + d;
        items->emplace_back(offset, ids_data[dim_offset],
                            scores_data[dim_offset]);
      }
Y
Yan Chunwei 已提交
213 214 215 216 217 218 219
    }
  }

  sent_offset_++;
  return true;
}

Q
Qiao Longfei 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
std::ostream &operator<<(std::ostream &os, const BeamSearch::Item &item) {
  os << "{";
  os << "offset: " << item.offset << ", ";
  os << "id: " << item.id << ", ";
  os << "score: " << item.score << "";
  os << "}";

  return os;
}

std::string ItemToString(const BeamSearch::Item &item) {
  std::ostringstream stream;
  stream << item;
  return stream.str();
}

K
ktlichkid 已提交
236
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yan Chunwei 已提交
237
 public:
Y
Yu Yang 已提交
238
  void Make() override {
Y
Yan Chunwei 已提交
239
    // inputs and outputs stored in proto
240 241
    AddInput("pre_ids", "ids in the previous step");
    AddInput("pre_scores", "accumulated scores in the previous step");
Y
Yan Chunwei 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    AddInput("ids", "a LoDTensor of shape of [None,k]");
    AddInput("scores",
             "a LoDTensor that has the same shape and LoD with `ids`");
    AddOutput("selected_ids",
              "a LoDTensor that stores the IDs selected by beam search");
    AddOutput(
        "selected_scores",
        "a LoDTensor that has the same shape and LoD with `selected_ids`");

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");

    AddComment(
        "This is a beam search operator that help to generate sequences.");
  }
};

K
ktlichkid 已提交
262
class BeamSearchOp : public framework::OperatorWithKernel {
K
ktlichkid 已提交
263 264
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
K
ktlichkid 已提交
265

K
ktlichkid 已提交
266
 protected:
K
ktlichkid 已提交
267
  void InferShape(framework::InferShapeContext *ctx) const override {
K
ktlichkid 已提交
268 269
    for (const std::string &arg :
         std::vector<std::string>({"pre_ids", "ids", "scores"})) {
K
ktlichkid 已提交
270 271
      PADDLE_ENFORCE(ctx->HasInput(arg), "BeamSearch need input argument '%s'",
                     arg);
K
ktlichkid 已提交
272 273 274
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
K
ktlichkid 已提交
275
      PADDLE_ENFORCE(ctx->HasOutput(arg),
K
ktlichkid 已提交
276 277
                     "BeamSearch need output argument '%s'", arg);
    }
278 279 280 281
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
282 283 284
    framework::OpKernelType kt = framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<framework::LoDTensor>("pre_ids")->type()),
K
ktlichkid 已提交
285
        platform::CPUPlace());
286
    return kt;
K
ktlichkid 已提交
287 288 289
  }
};

Q
Qiao Longfei 已提交
290 291 292 293 294
class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    for (auto &o : op_desc.Output("selected_ids")) {
295 296
      auto &selected_ids = block->FindRecursiveOrCreateVar(o);
      selected_ids.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
297 298
    }
    for (auto &o : op_desc.Output("selected_scores")) {
299 300
      auto &selected_scores = block->FindRecursiveOrCreateVar(o);
      selected_scores.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
301 302 303
    }
  }
};
K
ktlichkid 已提交
304

Y
Yan Chunwei 已提交
305 306
}  // namespace operators
}  // namespace paddle
K
ktlichkid 已提交
307

K
ktlichkid 已提交
308
namespace ops = paddle::operators;
K
ktlichkid 已提交
309 310 311

REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
                  ops::BeamSearchInferVarType);
K
ktlichkid 已提交
312 313 314
REGISTER_OP_CPU_KERNEL(
    beam_search,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
K
ktlichkid 已提交
315 316 317
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);