beam_search_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/beam_search_op.h"
Y
Yan Chunwei 已提交
16 17

#include <map>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26

namespace paddle {
namespace operators {

void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
                            framework::LoDTensor *selected_ids,
                            framework::LoDTensor *selected_scores) {
Q
Qiao Longfei 已提交
27 28 29
  auto abs_lod = framework::ToAbsOffset(ids_->lod());
  auto &high_level = abs_lod[lod_level_];

Y
Yan Chunwei 已提交
30
  auto items = SelectTopBeamSizeItems();
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38
  auto selected_items = ToMap(items, high_level.back());
  VLOG(3) << "selected_items:";
  for (size_t i = 0; i < selected_items.size(); ++i) {
    VLOG(3) << "offset:" << i;
    for (auto &item : selected_items[i]) {
      VLOG(3) << ItemToString(item);
    }
  }
Y
Yan Chunwei 已提交
39 40 41
  PruneEndidCandidates(pre_ids, &selected_items);
  // calculate the output tensor's height
  size_t num_instances = std::accumulate(
Y
Yan Chunwei 已提交
42
      std::begin(selected_items), std::end(selected_items), 0,
Y
Yan Chunwei 已提交
43 44 45 46 47 48 49 50 51
      [](size_t a, std::vector<Item> &b) { return a + b.size(); });
  // the output tensor shape should be [num_instances, 1]
  auto dims = framework::make_ddim(
      std::vector<int64_t>({static_cast<int>(num_instances), 1}));
  selected_ids->Resize(dims);
  selected_scores->Resize(dims);

  std::map<size_t /*offset*/, std::vector<Item>> hash;
  framework::LoD new_lod;
52
  auto *ids_data = selected_ids->mutable_data<int64_t>(platform::CPUPlace());
Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60
  auto *scores_data =
      selected_scores->mutable_data<float>(platform::CPUPlace());

  // fill in data
  std::vector<size_t> low_level;
  size_t low_offset = 0;
  for (auto &items : selected_items) {
    low_level.push_back(low_offset);
Y
Yan Chunwei 已提交
61 62 63 64 65 66
    sort(items.begin(), items.end(), [](const Item &a, const Item &b) {
      if (a.offset < b.offset) {
        return true;
      }
      return a.id < b.id;
    });
Y
Yan Chunwei 已提交
67 68 69 70 71 72
    for (auto &item : items) {
      ids_data[low_offset] = item.id;
      scores_data[low_offset] = item.score;
      low_offset++;
    }
  }
Y
Yan Chunwei 已提交
73 74
  low_level.push_back(low_offset);

Y
Yan Chunwei 已提交
75 76 77 78
  // fill lod
  framework::LoD lod(2);
  lod[0].assign(high_level.begin(), high_level.end());
  lod[1].assign(low_level.begin(), low_level.end());
Q
Qiao Longfei 已提交
79 80 81
  if (!framework::CheckLoD(lod)) {
    PADDLE_THROW("lod %s is not right", framework::LoDToString(lod));
  }
Y
Yan Chunwei 已提交
82 83 84 85
  selected_ids->set_lod(lod);
  selected_scores->set_lod(lod);
}

Y
Yan Chunwei 已提交
86 87
int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids,
                                     std::vector<std::vector<Item>> *items) {
88
  auto *pre_ids_data = pre_ids.data<int64_t>();
Y
Yan Chunwei 已提交
89

Y
Yan Chunwei 已提交
90
  int res = 0;
Y
Yan Chunwei 已提交
91 92 93 94
  for (size_t offset = 0; offset < items->size(); offset++) {
    auto prefix_id = pre_ids_data[offset];
    if (prefix_id == end_id_) {
      items->at(offset).clear();
Y
Yan Chunwei 已提交
95 96
    } else {
      res++;
Y
Yan Chunwei 已提交
97 98
    }
  }
Y
Yan Chunwei 已提交
99 100

  return res;
Y
Yan Chunwei 已提交
101 102 103
}

std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
Q
Qiao Longfei 已提交
104
    const std::vector<std::vector<Item>> &items, size_t element_num) {
Y
Yan Chunwei 已提交
105
  std::vector<std::vector<Item>> result;
Q
Qiao Longfei 已提交
106
  result.resize(element_num);
Y
Yan Chunwei 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  for (auto &entries : items) {
    for (const auto &item : entries) {
      result[item.offset].push_back(item);
    }
  }
  return result;
}

std::vector<std::vector<BeamSearch::Item>>
BeamSearch::SelectTopBeamSizeItems() {
  std::vector<std::vector<Item>> result;
  std::vector<Item> items;
  // for each source sentence, select the top beam_size items across all
  // candidate sets.
  while (NextItemSet(&items)) {
    std::nth_element(std::begin(items), std::begin(items) + beam_size_,
                     std::end(items), [](const Item &a, const Item &b) {
                       // TODO(superjom) make score's comparation customizable.
                       // partial sort in descending order
                       return a.score > b.score;
                     });
    // prune the top beam_size items.
    if (items.size() > beam_size_) {
      items.resize(beam_size_);
    }
    result.emplace_back(items);
  }
Q
Qiao Longfei 已提交
134 135 136 137 138 139 140 141
  VLOG(3) << "SelectTopBeamSizeItems result size " << result.size();
  for (auto &items : result) {
    VLOG(3) << "item set:";
    for (auto &item : items) {
      VLOG(3) << ItemToString(item);
    }
  }

Y
Yan Chunwei 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155
  return result;
}

// the candidates of a source
bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) {
  if (sent_offset_ >= ids_->NumElements(lod_level_)) {
    return false;
  }
  // find the current candidates
  auto ids = *ids_;
  auto scores = *scores_;

  auto abs_lod = framework::ToAbsOffset(ids.lod());

156
  auto *ids_data = ids.data<int64_t>();
Y
Yan Chunwei 已提交
157 158 159 160 161 162 163 164 165 166 167
  auto *scores_data = scores.data<float>();

  size_t instance_dim = 1;
  for (int i = 1; i < ids.dims().size(); i++) {
    instance_dim *= ids.dims()[i];
  }

  items->clear();
  items->reserve(framework::product(ids.dims()));
  for (size_t offset = abs_lod[lod_level_][sent_offset_];
       offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) {
168
    for (size_t d = 0; d < instance_dim; d++) {
Y
Yan Chunwei 已提交
169 170 171 172 173 174 175 176 177 178
      const size_t dim_offset = offset * instance_dim + d;
      items->emplace_back(offset, ids_data[dim_offset],
                          scores_data[dim_offset]);
    }
  }

  sent_offset_++;
  return true;
}

Q
Qiao Longfei 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
std::ostream &operator<<(std::ostream &os, const BeamSearch::Item &item) {
  os << "{";
  os << "offset: " << item.offset << ", ";
  os << "id: " << item.id << ", ";
  os << "score: " << item.score << "";
  os << "}";

  return os;
}

std::string ItemToString(const BeamSearch::Item &item) {
  std::ostringstream stream;
  stream << item;
  return stream.str();
}

Y
Yan Chunwei 已提交
195 196 197
class BeamSearchProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
198
  BeamSearchProtoAndCheckerMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yan Chunwei 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      : OpProtoAndCheckerMaker(proto, op_checker) {
    // inputs and outputs stored in proto
    AddInput("pre_ids", "ids in previous step");
    AddInput("ids", "a LoDTensor of shape of [None,k]");
    AddInput("scores",
             "a LoDTensor that has the same shape and LoD with `ids`");
    AddOutput("selected_ids",
              "a LoDTensor that stores the IDs selected by beam search");
    AddOutput(
        "selected_scores",
        "a LoDTensor that has the same shape and LoD with `selected_ids`");

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");

    AddComment(
        "This is a beam search operator that help to generate sequences.");
  }
};

Q
Qiao Longfei 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
class BeamSearchInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    for (const std::string &arg :
         std::vector<std::string>({"pre_ids", "ids", "scores"})) {
      PADDLE_ENFORCE(context->HasInput(arg),
                     "BeamSearch need input argument '%s'", arg);
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
      PADDLE_ENFORCE(context->HasOutput(arg),
                     "BeamSearch need output argument '%s'", arg);
    }
  }
};

class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    for (auto &o : op_desc.Output("selected_ids")) {
243
      block->Var(o)->SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
244 245
    }
    for (auto &o : op_desc.Output("selected_scores")) {
246
      block->Var(o)->SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
247 248 249 250
    }
  }
};

Y
Yan Chunwei 已提交
251 252 253
}  // namespace operators
}  // namespace paddle

Q
Qiao Longfei 已提交
254 255 256 257 258
REGISTER_OPERATOR(beam_search, paddle::operators::BeamSearchOp,
                  paddle::operators::BeamSearchProtoAndCheckerMaker,
                  paddle::operators::BeamSearchInferShape,
                  paddle::operators::BeamSearchInferVarType,
                  paddle::framework::EmptyGradOpMaker);