math_function.cu 5.3 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {

template <>
Q
qijun 已提交
21 22 23 24 25
void gemm<platform::GPUPlace, float>(
    const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M,
    const int N, const int K, const float alpha, const float* A, const int lda,
    const float* B, const int ldb, const float beta, float* C, const int ldc,
    platform::DeviceContext* context) {
Q
qijun 已提交
26 27
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
28 29
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
30
  cublasOperation_t cuTransA =
Q
qijun 已提交
31
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
32
  cublasOperation_t cuTransB =
Q
qijun 已提交
33
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
34

Q
qijun 已提交
35
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
Q
qijun 已提交
36 37
      reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
Q
qijun 已提交
38 39 40
}

template <>
Q
qijun 已提交
41 42 43 44 45
void gemm<platform::GPUPlace, double>(
    const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M,
    const int N, const int K, const double alpha, const double* A,
    const int lda, const double* B, const int ldb, const double beta, double* C,
    const int ldc, platform::DeviceContext* context) {
Q
qijun 已提交
46 47
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
48 49
  lda = (transA == CblasNoTrans) ? K : M;
  ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
50
  cublasOperation_t cuTransA =
Q
qijun 已提交
51
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
52
  cublasOperation_t cuTransB =
Q
qijun 已提交
53
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
54
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
Q
qijun 已提交
55 56
      reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
Q
qijun 已提交
57 58
}

Q
qijun 已提交
59
template <>
Q
qijun 已提交
60 61 62 63 64
void matmul<platform::GPUPlace, float>(const framework::Tensor& in1, bool in1_T,
                                       const framework::Tensor& in2, bool in2_T,
                                       float alpha, framework::Tensor* out,
                                       float beta,
                                       platform::DeviceContext* context) {
Q
qijun 已提交
65 66 67 68
  auto in1_dim = in1.dims();
  auto in2_dim = in2.dims();
  auto out_dim = out->dims();
  PADDLE_ENFORCE(
Q
qijun 已提交
69 70 71 72 73
      in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
      "The input and output of matmul be matrix");
  PADDLE_ENFORCE(
      in1_dim[1] == in2_dim[0],
      "First matrix's width must be equal with second matrix's height.");
Q
qijun 已提交
74

Q
qijun 已提交
75 76 77 78
  PADDLE_ENFORCE(platform::is_gpu_place(in1.place()) &&
                     platform::is_gpu_place(in2.place()) &&
                     platform::is_gpu_place(out->place()),
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
79

Q
qijun 已提交
80
  int M = out_dim[0];
Q
qijun 已提交
81 82 83
  int N = out_dim[1];
  int K = in1_dim[1];

Q
qijun 已提交
84
  CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
85 86
  CBLAS_TRANSPOSE in2_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;

Q
qijun 已提交
87 88 89
  gemm<platform::GPUPlace, float>(in1_Trans, in2_Trans, M, N, K, alpha,
                                  in1.data<float>(), K, in2.data<float>(), N,
                                  beta, out->data<float>(), N, context);
Q
qijun 已提交
90 91 92
}

template <>
Q
qijun 已提交
93 94 95 96 97 98
void matmul<platform::GPUPlace, double>(const framework::Tensor& in1,
                                        bool in1_T,
                                        const framework::Tensor& in2,
                                        bool in2_T, float alpha,
                                        framework::Tensor* out, float beta,
                                        platform::DeviceContext* context) {
Q
qijun 已提交
99 100 101 102
  auto in1_dim = in1.dims();
  auto in2_dim = in2.dims();
  auto out_dim = out->dims();
  PADDLE_ENFORCE(
Q
qijun 已提交
103 104 105 106 107
      in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
      "The input and output of matmul be matrix");
  PADDLE_ENFORCE(
      in1_dim[1] == in2_dim[0],
      "First matrix's width must be equal with second matrix's height.");
Q
qijun 已提交
108

Q
qijun 已提交
109 110 111 112
  PADDLE_ENFORCE(platform::is_gpu_place(in1.place()) &&
                     platform::is_gpu_place(in2.place()) &&
                     platform::is_gpu_place(out->place()),
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
113

Q
qijun 已提交
114 115 116 117
  int M = out_dim[0];
  int N = out_dim[1];
  int K = in1_dim[1];
  CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
118 119
  CBLAS_TRANSPOSE in2_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;

Q
qijun 已提交
120 121 122
  gemm<platform::GPUPlace, double>(in1_Trans, in2_Trans, M, N, K, alpha,
                                   in1.data<double>(), K, in2.data<double>(), N,
                                   beta, out->data<double>(), N, context);
Q
qijun 已提交
123
}
Q
qijun 已提交
124 125 126
}  // namespace math
}  // namespace operators
}  // namespace paddle