math_function.cu 5.3 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"


namespace paddle {
namespace operators {
namespace math {

template <>
void gemm<platform::GPUPlace float>(const CBLAS_TRANSPOSE transA,
                                    const CBLAS_TRANSPOSE transB,
                                    const int M,
                                    const int N,
                                    const int K,
                                    const float alpha,
                                    const float* A,
                                    const int lda,
                                    const float* B,
                                    const int ldb,
                                    const float beta,
                                    float* C,
                                    const int ldc,
                                    const platform::DeviceContext* context) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA =
      (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
                     
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
      reinterpret_cast<const platform::CUDADeviceContext*>(context)->
        cublas_handle(),
      cuTransB,
      cuTransA,
      N,
      M,
      K,
      &alpha,
      B,
      ldb,
      A,
      lda,
      &beta,
      C,
      ldc));
}

template <>
void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA,
                                      const CBLAS_TRANSPOSE transB,
                                      const int M,
                                      const int N,
                                      const int K,
                                      const double alpha,
                                      const double* A,
                                      const int lda,
                                      const double* B,
                                      const int ldb,
                                      const double beta,
                                      double* C,
                                      const int ldc,
                                      const platform::DeviceContext* context) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA =
      (TransA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (TransB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
      reinterpret_cast<const platform::CUDADeviceContext*>(context)->
        cublas_handle(),
      cuTransB,
      cuTransA,
      N,
      M,
      K,
      &alpha,
      B,
      ldb,
      A,
      lda,
      &beta,
      C,
      ldc));
}


template <>
void axpy<platform::GPUPlace, float>(const int n, 
                                     const float alpha,
                                     const float* x,
                                     float* y,
                                     const platform::DeviceContext* context) {
  CUBLAS_ENFORCE(platform::dynload::cublasSaxpy(
    reinterpret_cast<const platform::CUDADeviceContext*>(context)->
      cublas_handle(), N, &alpha, X, 1, Y, 1));
}

template <>
void axpy<platform::GPUPlace, double>(const int n,
                                      const double alpha,
                                      const double* x,
                                      double* y,
                                      const platform::DeviceContext* context) {
  CUBLAS_ENFORCE(platform::dynload::cublasDaxpy(
    reinterpret_cast<const platform::CUDADeviceContext*>(context)->
      cublas_handle(), N, &alpha, X, 1, Y, 1));
}

template <>
float dotProduct<platform::GPUPlace, float>(const int n,
                                            const float* x,
                                            const float* y,
                                            const platform::DeviceContext* context) {
  CUBLAS_ENFORCE(platform::dynload::cublasSdot(
    reinterpret_cast<const platform::CUDADeviceContext*>(context)->
      cublas_handle(), n, a, 1, b, 1, &result));
}

template <>
double dotProduct<platform::GPUPlace, double>(const int n,
                                              const double* x,
                                              const double* y,
                                              const platform::DeviceContext* context) {
  CUBLAS_ENFORCE(platform::dynload::cublasDdot(
    reinterpret_cast<const platform::CUDADeviceContext*>(context)->
      cublas_handle(), n, a, 1, b, 1, &result));
}

}  // namespace math
}  // namespace operators
}  // namespace paddle