mul_op_npu.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/mul_op.h"
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MulNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* out = ctx.Output<framework::Tensor>("Out");
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        out->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
39
        const auto& runner =
40 41 42 43
            NpuOpRunner("MatMul", {*x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});

        runner.Run(stream);
44
      } else if (x->dims().size() >= 3 && y->dims().size() == 2) {
45 46
        // reshape
        Tensor tmp_x(x->type());
47 48 49 50
        int64_t sec_dim = x->dims()[1];
        for (auto i = 2; i < x->dims().size(); i++) {
          sec_dim *= x->dims()[i];
        }
51
        int64_t first_dim = x->dims()[0];
52
        tmp_x.ShareDataWith(*x);
53 54 55
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        out->mutable_data<T>(ctx.GetPlace());
        // matmul
L
Leo Chen 已提交
56
        const auto& runner =
57 58 59 60 61
            NpuOpRunner("MatMul", {tmp_x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner.Run(stream);
      } else {
        PADDLE_THROW(
62
            platform::errors::InvalidArgument("npu error: not support dims"));
63 64 65 66 67 68 69 70
      }
      // to do other
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
      if (x->type() == framework::proto::VarType::FP16 &&
          y->type() == framework::proto::VarType::FP16) {
        // NOTE: When the dim of the input and output shapes is inconsistent,
        // (Boradcast) BatchMatMul NPU OP only support FP16.
        out->mutable_data<T>(ctx.GetPlace());
        const auto& runner =
            NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
                        {{"adj_x1", false}, {"adj_x2", false}});

        auto stream =
            ctx.template device_context<paddle::platform::NPUDeviceContext>()
                .stream();
        runner.Run(stream);
      } else {
        // flatten => x.shape=[6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
        tmp_x.ShareDataWith(*x);
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));

        // matmul [6,4] , [4, 5] => [6, 5]
        out->mutable_data<T>(ctx.GetPlace());

        Tensor tmp_out(x->type());
        tmp_out.ShareDataWith(*out);
        tmp_out.Resize(framework::make_ddim({first_dim, y->dims()[1]}));

        const auto& runner_matmul =
            NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner_matmul.Run(stream);
      }
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    }
  }
};

template <typename DeviceContext, typename T>
class MulGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
126
          const auto& runner_dx =
127 128 129 130 131 132 133 134
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }

        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
135
          const auto& runner_dy =
136 137 138 139 140
              NpuOpRunner("MatMul", {*x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
141
      } else if (x->dims().size() >= 3 && y->dims().size() == 2) {
142 143 144 145 146
        // flatten => x.shape=[6, 4]
        // matmul
        if (dx) {
          // matmul [2, 5] * [12, 5] => [2, 12]
          dx->mutable_data<T>(ctx.GetPlace());
147 148 149 150
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
          tmp_dx.Resize(framework::make_ddim({dout->dims()[0], y->dims()[0]}));

L
Leo Chen 已提交
151
          const auto& runner_matmul =
152
              NpuOpRunner("MatMul", {*dout, *y}, {tmp_dx},
153 154 155 156 157 158 159
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }

        if (dy) {
          // flatten
          Tensor tmp_x(x->type());
160 161 162 163
          int64_t sec_dim = x->dims()[1];
          for (auto i = 2; i < x->dims().size(); i++) {
            sec_dim *= x->dims()[i];
          }
164
          int64_t first_dim = x->dims()[0];
165
          tmp_x.ShareDataWith(*x);
166 167
          tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
168
          const auto& runner_dy =
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
              NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
      // tmp_dout both used by dx and dy
      Tensor tmp_dout(x->type());
      int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1];
      int64_t dout_sec_dim = dout->dims()[2];
185
      tmp_dout.ShareDataWith(*dout);
186 187 188
      tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim}));

      if (dx) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        // tmp_dout * y [2, 3, 5] * [4,5] => [2, 3, 4]
        if (dout->type() == framework::proto::VarType::FP16 &&
            y->type() == framework::proto::VarType::FP16) {
          // NOTE: When the dim of the input and output shapes is inconsistent,
          // (Boradcast) BatchMatMul NPU OP only support FP16.
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", true}});

          auto stream =
              ctx.template device_context<paddle::platform::NPUDeviceContext>()
                  .stream();
          runner.Run(stream);
        } else {
          dx->mutable_data<T>(ctx.GetPlace());
          Tensor tmp_dx(x->type());
          tmp_dx.ShareDataWith(*dx);
          tmp_dx.Resize(framework::make_ddim({dout_first_dim, y->dims()[0]}));

          const auto& runner_matmul =
              NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
        }
214 215 216 217 218 219
      }
      if (dy) {
        // flatten x.shape [2,3,4] => [6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
220
        tmp_x.ShareDataWith(*x);
221 222 223
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        // mamtul [6,4] [6,5] =>[4,5]
        dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
224
        const auto& runner_dy =
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy},
                        {{"transpose_x1", true}, {"transpose_x2", false}});
        runner_dy.Run(stream);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
    mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);