mul_op_npu.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MulNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* out = ctx.Output<framework::Tensor>("Out");
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        out->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
39
        const auto& runner =
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
            NpuOpRunner("MatMul", {*x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});

        runner.Run(stream);
      } else if (x->dims().size() == 3 && y->dims().size() == 2) {
        // reshape
        Tensor tmp_x(x->type());
        int64_t sec_dim = x->dims()[1] * x->dims()[2];
        int64_t first_dim = x->dims()[0];
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        tmp_x.mutable_data<T>(ctx.GetPlace());
        framework::TensorCopy(
            *x, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), &tmp_x);
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        out->mutable_data<T>(ctx.GetPlace());
        // matmul
L
Leo Chen 已提交
57
        const auto& runner =
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            NpuOpRunner("MatMul", {tmp_x, *y}, {*out},
                        {{"transpose_x1", false}, {"transpose_x2", false}});
        runner.Run(stream);
      } else {
        PADDLE_THROW(
            platform::errors::InvalidArgument("npu error: not suppert dims"));
      }
      // to do other
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
      // flatten => x.shape=[6, 4]
      Tensor tmp_x(x->type());
      int64_t first_dim = x->dims()[0] * x->dims()[1];
      int64_t sec_dim = x->dims()[2];
      tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
      tmp_x.mutable_data<T>(ctx.GetPlace());
      framework::TensorCopy(
          *x, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &tmp_x);
      tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));

      // matmul [6,4] , [4, 5] => [6, 5]
      Tensor tmp_matmul(x->type());
      tmp_matmul.Resize(framework::make_ddim({first_dim, y->dims()[1]}));
      tmp_matmul.mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
88
      const auto& runner_matmul =
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
          NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_matmul},
                      {{"transpose_x1", false}, {"transpose_x2", false}});

      runner_matmul.Run(stream);
      // reshape [6, 5] => [2, 3, 5]
      (*out).Resize(
          framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]}));
      out->mutable_data(ctx.GetPlace(), x->type());
      framework::TensorCopy(
          tmp_matmul, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), out);
      (*out).Resize(
          framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]}));
    }
  }
};

template <typename DeviceContext, typename T>
class MulGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
    int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    if (x_num_col_dims == 1 && y_num_col_dims == 1) {
      if (x->dims().size() == 2 && y->dims().size() == 2) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
124
          const auto& runner_dx =
125 126 127 128 129 130 131 132
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }

        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
133
          const auto& runner_dy =
134 135 136 137 138 139 140 141 142 143 144 145 146
              NpuOpRunner("MatMul", {*x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      } else if (x->dims().size() == 3 && y->dims().size() == 2) {
        // flatten => x.shape=[6, 4]
        // matmul
        if (dx) {
          // matmul [2, 5] * [12, 5] => [2, 12]
          dx->mutable_data<T>(ctx.GetPlace());
          auto dx_dims = dx->dims();
          dx->Resize(framework::make_ddim({dout->dims()[0], y->dims()[0]}));
L
Leo Chen 已提交
147
          const auto& runner_matmul =
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});
          runner_matmul.Run(stream);
          // reshape [2, 12] => [2, 3, 4]
          dx->Resize(dx_dims);
        }

        if (dy) {
          // flatten
          Tensor tmp_x(x->type());
          int64_t sec_dim = x->dims()[1] * x->dims()[2];
          int64_t first_dim = x->dims()[0];
          tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
          tmp_x.mutable_data<T>(ctx.GetPlace());
          framework::TensorCopy(
              *x, ctx.GetPlace(),
              ctx.template device_context<platform::DeviceContext>(), &tmp_x);
          tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
167
          const auto& runner_dy =
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
              NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() == 3 && y->dims().size() == 2) {
      // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
      PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
                        platform::errors::InvalidArgument(
                            "now only support x_num_col_dims == 2: but got %d",
                            x_num_col_dims));
      // tmp_dout both used by dx and dy
      Tensor tmp_dout(x->type());
      int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1];
      int64_t dout_sec_dim = dout->dims()[2];
      tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim}));
      tmp_dout.mutable_data<T>(ctx.GetPlace());
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &tmp_dout);
      tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim}));

      if (dx) {
        // tmp_dout * y [6,5] * [4,5] => [6, 4]
        dx->mutable_data<T>(ctx.GetPlace());
        auto dx_dims = dx->dims();
        dx->Resize(framework::make_ddim({dout_first_dim, y->dims()[0]}));
L
Leo Chen 已提交
196
        const auto& runner_matmul =
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
            NpuOpRunner("MatMul", {tmp_dout, *y}, {*dx},
                        {{"transpose_x1", false}, {"transpose_x2", true}});
        runner_matmul.Run(stream);
        // reshape [2, 12] => [2, 3, 4]
        dx->Resize(dx_dims);
      }
      if (dy) {
        // flatten x.shape [2,3,4] => [6, 4]
        Tensor tmp_x(x->type());
        int64_t first_dim = x->dims()[0] * x->dims()[1];
        int64_t sec_dim = x->dims()[2];
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        tmp_x.mutable_data<T>(ctx.GetPlace());
        framework::TensorCopy(
            *x, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), &tmp_x);
        tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
        // mamtul [6,4] [6,5] =>[4,5]
        dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
216
        const auto& runner_dy =
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
            NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy},
                        {{"transpose_x1", true}, {"transpose_x2", false}});
        runner_dy.Run(stream);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
    mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);