spectral_norm_op.cc 8.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/spectral_norm_op.h"
Z
zhhsplendid 已提交
13 14 15

#include <memory>

D
dengkaipeng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class SpectralNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("U"),
                   "Input(U) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("V"),
                   "Input(V) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SpectralNormOp should not be null.");

    auto dim_weight = ctx->GetInputDim("Weight");
D
dengkaipeng 已提交
39 40 41
    auto rank_weight = dim_weight.size();
    PADDLE_ENFORCE(rank_weight >= 2 && rank_weight <= 5,
                   "The rank of Input(Weights) can only be 2, 3,"
D
dengkaipeng 已提交
42 43 44 45
                   "4, 5 for fc, conv1d, conv2d, conv3d layers.");

    int dim = ctx->Attrs().Get<int>("dim");
    int power_iters = ctx->Attrs().Get<int>("power_iters");
D
dengkaipeng 已提交
46
    PADDLE_ENFORCE(dim == 0 || dim == 1, "Attr(dim) can only be 0 or 1");
D
dengkaipeng 已提交
47 48 49
    PADDLE_ENFORCE(power_iters >= 0,
                   "Attr(power_iters) should be larger equal then 0");

D
dengkaipeng 已提交
50 51 52 53 54 55 56 57 58
    int h = dim_weight[dim];
    int w = 1;
    for (int i = 0; i < rank_weight; i++) {
      if (i != dim) {
        w *= dim_weight[i];
      }
    }
    auto dim_u = ctx->GetInputDim("U");
    auto dim_v = ctx->GetInputDim("V");
59 60 61 62 63 64 65 66 67 68 69 70 71

    if (ctx->IsRuntime() || (dim_u[0] > 0 && h > 0)) {
      PADDLE_ENFORCE_EQ(dim_u[0], h,
                        "Input(U) dims[0] should be equal to "
                        "Input(Weight) dims[Attr(dim)]");
    }

    if (ctx->IsRuntime() || (dim_v[0] > 0 && w > 0)) {
      PADDLE_ENFORCE_EQ(
          dim_v[0], w,
          "Input(V) dims[0] should be equal to "
          "the product of Input(Weight) dims except dims[Attr(dim)]");
    }
D
dengkaipeng 已提交
72

D
dengkaipeng 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    ctx->SetOutputDim("Out", dim_weight);
    ctx->ShareLoD("Weight", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
                                   ctx.GetPlace());
  }
};

class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Weight",
             "The input weight tensor of spectral_norm operator, "
D
dengkaipeng 已提交
90
             "This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
D
dengkaipeng 已提交
91 92 93 94 95
             "weights of fc, conv1d, conv2d, conv3d layer.");
    AddInput("U",
             "The weight_u tensor of spectral_norm operator, "
             "This can be a 1-D tensor in shape [H, 1],"
             "H is the 1st dimentions of Weight after reshape"
96 97
             "corresponding by Attr(dim). As for Attr(dim) = 1"
             "in conv2d layer with weight shape [M, C, K1, K2]"
D
dengkaipeng 已提交
98
             "Weight will be reshape to [C, M*K1*K2], U will"
99
             "be in shape [C, 1].");
D
dengkaipeng 已提交
100
    AddInput("V",
101
             "The weight_v tensor of spectral_norm operator, "
D
dengkaipeng 已提交
102 103 104 105 106
             "This can be a 1-D tensor in shape [W, 1], "
             "W is the 2nd dimentions of Weight after reshape "
             "corresponding by Attr(dim). As for Attr(dim) = 1 "
             "in conv2d layer with weight shape [M, C, K1, K2] "
             "Weight will be reshape to [C, M*K1*K2], V will "
107
             "be in shape [M*K1*K2, 1].");
D
dengkaipeng 已提交
108 109 110 111 112
    AddOutput("Out",
              "The output weight tensor of spectral_norm operator, "
              "This tensor is in same shape with Input(Weight).");

    AddAttr<int>("dim",
D
dengkaipeng 已提交
113 114
                 "The index of dimension which should be permuted "
                 "to the first before reshaping Input(Weight) to "
D
dengkaipeng 已提交
115 116
                 "matrix, it should be set as 0 if Input(Weight) is "
                 "the weight of fc layer, and should be set as 1 if "
D
dengkaipeng 已提交
117 118
                 "Input(Weight) is the weight of conv layer, "
                 "default 0.")
D
dengkaipeng 已提交
119 120
        .SetDefault(0);
    AddAttr<int>("power_iters",
D
dengkaipeng 已提交
121 122
                 "number of power iterations to calculate "
                 "spectral norm, default 1.")
D
dengkaipeng 已提交
123 124
        .SetDefault(1);
    AddAttr<float>("eps",
D
dengkaipeng 已提交
125
                   "epsilon for numerical stability in "
D
dengkaipeng 已提交
126 127 128 129
                   "calculating norms")
        .SetDefault(1e-12);

    AddComment(R"DOC(
D
dengkaipeng 已提交
130
          This layer calculates the spectral normalization value of weight of
131 132
          fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
          tensor.
D
dengkaipeng 已提交
133

134 135 136
          Spectral normalization stabilizes the training of critic in GANs
          (Generative Adversarial Networks). This layer rescaling weight tensor
          with spectral normalize value.
D
dengkaipeng 已提交
137

138
          For spectral normalization calculations, we rescaling weight
D
dengkaipeng 已提交
139
          tensor with :math:`\sigma`, while :math:`\sigma{\mathbf{W}}` is
140

D
dengkaipeng 已提交
141
            $$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
142

D
dengkaipeng 已提交
143
          We calculate :math:`\sigma{\mathbf{W}}` through power iterations as
144

D
dengkaipeng 已提交
145
            $$
146
            \mathbf{v} = \mathbf{W}^{T} \mathbf{u}
D
dengkaipeng 已提交
147 148 149 150 151
            $$
            $$
            \mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
            $$
            $$
152
            \mathbf{u} = \mathbf{W}^{T} \mathbf{v}
D
dengkaipeng 已提交
153 154 155 156
            $$
            $$
            \mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
            $$
157

D
dengkaipeng 已提交
158
          And :math:`\sigma` should be
159

D
dengkaipeng 已提交
160
            $$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
161 162 163

          For details of spectral normalization, please refer to paper: 
          `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
D
dengkaipeng 已提交
164 165 166 167
         )DOC");
  }
};

Z
zhhsplendid 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
class SpectralNormGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("spectral_norm_grad");

    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetInput("Weight", Input("Weight"));
    op->SetInput("U", Input("U"));
    op->SetInput("V", Input("V"));

    op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));

    op->SetAttrMap(Attrs());

    return op;
  }
};

D
dengkaipeng 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
class SpectralNormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Weight"), "Input(Weight) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("U"), "Input(U) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("V"), "Input(V) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("Weight");
    if (ctx->HasOutput(framework::GradVarName("Weight"))) {
      ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
                                   ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
Z
zhhsplendid 已提交
219
                  ops::SpectralNormGradOpDescMaker);
D
dengkaipeng 已提交
220 221 222 223 224 225 226 227 228
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
REGISTER_OP_CPU_KERNEL(
    spectral_norm,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    spectral_norm_grad,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);