spectral_norm_op.cc 8.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/spectral_norm_op.h"
Z
zhhsplendid 已提交
13 14 15

#include <memory>

D
dengkaipeng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class SpectralNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("U"),
                   "Input(U) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("V"),
                   "Input(V) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SpectralNormOp should not be null.");

    auto dim_weight = ctx->GetInputDim("Weight");
D
dengkaipeng 已提交
39 40 41
    auto rank_weight = dim_weight.size();
    PADDLE_ENFORCE(rank_weight >= 2 && rank_weight <= 5,
                   "The rank of Input(Weights) can only be 2, 3,"
D
dengkaipeng 已提交
42 43 44 45
                   "4, 5 for fc, conv1d, conv2d, conv3d layers.");

    int dim = ctx->Attrs().Get<int>("dim");
    int power_iters = ctx->Attrs().Get<int>("power_iters");
D
dengkaipeng 已提交
46
    PADDLE_ENFORCE(dim == 0 || dim == 1, "Attr(dim) can only be 0 or 1");
D
dengkaipeng 已提交
47 48 49
    PADDLE_ENFORCE(power_iters >= 0,
                   "Attr(power_iters) should be larger equal then 0");

D
dengkaipeng 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    int h = dim_weight[dim];
    int w = 1;
    for (int i = 0; i < rank_weight; i++) {
      if (i != dim) {
        w *= dim_weight[i];
      }
    }
    auto dim_u = ctx->GetInputDim("U");
    auto dim_v = ctx->GetInputDim("V");
    PADDLE_ENFORCE_EQ(dim_u[0], h,
                      "Input(U) dims[0] should be equal to "
                      "Input(Weight) dims[Attr(dim)]");
    PADDLE_ENFORCE_EQ(
        dim_v[0], w,
        "Input(V) dims[0] should be equal to "
        "the product of Input(Weight) dims except dims[Attr(dim)]");

D
dengkaipeng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    ctx->SetOutputDim("Out", dim_weight);
    ctx->ShareLoD("Weight", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
                                   ctx.GetPlace());
  }
};

class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Weight",
             "The input weight tensor of spectral_norm operator, "
D
dengkaipeng 已提交
84
             "This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
D
dengkaipeng 已提交
85 86 87 88 89
             "weights of fc, conv1d, conv2d, conv3d layer.");
    AddInput("U",
             "The weight_u tensor of spectral_norm operator, "
             "This can be a 1-D tensor in shape [H, 1],"
             "H is the 1st dimentions of Weight after reshape"
90 91
             "corresponding by Attr(dim). As for Attr(dim) = 1"
             "in conv2d layer with weight shape [M, C, K1, K2]"
D
dengkaipeng 已提交
92
             "Weight will be reshape to [C, M*K1*K2], U will"
93
             "be in shape [C, 1].");
D
dengkaipeng 已提交
94
    AddInput("V",
95
             "The weight_v tensor of spectral_norm operator, "
D
dengkaipeng 已提交
96 97 98 99 100
             "This can be a 1-D tensor in shape [W, 1], "
             "W is the 2nd dimentions of Weight after reshape "
             "corresponding by Attr(dim). As for Attr(dim) = 1 "
             "in conv2d layer with weight shape [M, C, K1, K2] "
             "Weight will be reshape to [C, M*K1*K2], V will "
101
             "be in shape [M*K1*K2, 1].");
D
dengkaipeng 已提交
102 103 104 105 106
    AddOutput("Out",
              "The output weight tensor of spectral_norm operator, "
              "This tensor is in same shape with Input(Weight).");

    AddAttr<int>("dim",
D
dengkaipeng 已提交
107 108
                 "The index of dimension which should be permuted "
                 "to the first before reshaping Input(Weight) to "
D
dengkaipeng 已提交
109 110
                 "matrix, it should be set as 0 if Input(Weight) is "
                 "the weight of fc layer, and should be set as 1 if "
D
dengkaipeng 已提交
111 112
                 "Input(Weight) is the weight of conv layer, "
                 "default 0.")
D
dengkaipeng 已提交
113 114
        .SetDefault(0);
    AddAttr<int>("power_iters",
D
dengkaipeng 已提交
115 116
                 "number of power iterations to calculate "
                 "spectral norm, default 1.")
D
dengkaipeng 已提交
117 118
        .SetDefault(1);
    AddAttr<float>("eps",
D
dengkaipeng 已提交
119
                   "epsilon for numerical stability in "
D
dengkaipeng 已提交
120 121 122 123
                   "calculating norms")
        .SetDefault(1e-12);

    AddComment(R"DOC(
D
dengkaipeng 已提交
124
          This layer calculates the spectral normalization value of weight of
125 126
          fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
          tensor.
D
dengkaipeng 已提交
127

128 129 130
          Spectral normalization stabilizes the training of critic in GANs
          (Generative Adversarial Networks). This layer rescaling weight tensor
          with spectral normalize value.
D
dengkaipeng 已提交
131

132
          For spectral normalization calculations, we rescaling weight
D
dengkaipeng 已提交
133
          tensor with :math:`\sigma`, while :math:`\sigma{\mathbf{W}}` is
134

D
dengkaipeng 已提交
135
            $$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
136

D
dengkaipeng 已提交
137
          We calculate :math:`\sigma{\mathbf{W}}` through power iterations as
138

D
dengkaipeng 已提交
139
            $$
140
            \mathbf{v} = \mathbf{W}^{T} \mathbf{u}
D
dengkaipeng 已提交
141 142 143 144 145
            $$
            $$
            \mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
            $$
            $$
146
            \mathbf{u} = \mathbf{W}^{T} \mathbf{v}
D
dengkaipeng 已提交
147 148 149 150
            $$
            $$
            \mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
            $$
151

D
dengkaipeng 已提交
152
          And :math:`\sigma` should be
153

D
dengkaipeng 已提交
154
            $$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
155 156 157

          For details of spectral normalization, please refer to paper: 
          `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
D
dengkaipeng 已提交
158 159 160 161
         )DOC");
  }
};

Z
zhhsplendid 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
class SpectralNormGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("spectral_norm_grad");

    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetInput("Weight", Input("Weight"));
    op->SetInput("U", Input("U"));
    op->SetInput("V", Input("V"));

    op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));

    op->SetAttrMap(Attrs());

    return op;
  }
};

D
dengkaipeng 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class SpectralNormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Weight"), "Input(Weight) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("U"), "Input(U) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("V"), "Input(V) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("Weight");
    if (ctx->HasOutput(framework::GradVarName("Weight"))) {
      ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
                                   ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
Z
zhhsplendid 已提交
213
                  ops::SpectralNormGradOpDescMaker);
D
dengkaipeng 已提交
214 215 216 217 218 219 220 221 222
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
REGISTER_OP_CPU_KERNEL(
    spectral_norm,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    spectral_norm_grad,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);