unpool_op.cc 5.7 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14 15 16 17 18 19 20

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
21
  Unpool2dOpMaker(framework::OpProto* proto,
S
sweetsky0901 已提交
22
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
23 24 25 26 27
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
28
    AddInput("Indices",
S
sweetsky0901 已提交
29 30 31 32 33 34 35 36 37 38
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddOutput("Out",
        "(Tensor) The output tensor of unpool operator."
        "The format of output tensor is also NCHW."
        "Where N is batch size, C is "
        "the number of channels, H and W is the height and "
        "width of feature.");
    AddAttr<std::vector<int>>("ksize",
S
sweetsky0901 已提交
39
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
40
        "of unpooling operator.");
S
sweetsky0901 已提交
41 42
    AddAttr<std::vector<int>>("strides",
        "(vector, default:{1, 1}), "
S
sweetsky0901 已提交
43
        "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
44
        .SetDefault({1, 1});
S
sweetsky0901 已提交
45 46
    AddAttr<std::vector<int>>("paddings",
        "(vector defalut:{0,0}), "
S
sweetsky0901 已提交
47
        "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
48
        .SetDefault({0, 0});
S
sweetsky0901 已提交
49
    AddAttr<std::string>("unpooling_type",
S
sweetsky0901 已提交
50 51
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
52
    AddComment(R"DOC(
S
sweetsky0901 已提交
53 54 55 56 57 58 59 60
          "Input shape: $(N, C_{in}, H_{in}, W_{in})$
          Output shape: $(N, C_{out}, H_{out}, W_{out})$
          Where
          $$
            H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
            W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
          $$
          Paper: http://www.matthewzeiler.com/wp-content/uploads/2017
61
          /07/iccv2011.pdf
S
sweetsky0901 已提交
62 63 64 65 66 67 68 69 70 71
        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
  int output_size = (input_size -1) * stride - 2 * padding + ksize;
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
72 73 74 75 76 77 78 79 80
protected:
  framework::OpKernelType GetKernelType(
    const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
      ctx.device_context());
  }

public:
S
sweetsky0901 已提交
81 82 83 84
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
                   "should not be null.");
85
    PADDLE_ENFORCE(ctx->HasInput("Indices"), "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
86 87 88 89
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UnpoolOp should not be null.");
    auto in_x_dims = ctx->GetInputDim("X");
90
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
91
    std::string unpooling_type =
S
sweetsky0901 已提交
92
      ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
93 94 95
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
96
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
97
                    "Unpooling intput must be of 4-dimensional.");
98
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
S
sweetsky0901 已提交
99 100 101 102 103 104 105 106 107 108
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(
        OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
109 110 111 112 113 114 115 116
 protected:
  framework::OpKernelType GetKernelType(
    const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
      ctx.device_context());
  }

S
sweetsky0901 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                                  "Input(X@GRAD) should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
S
sweetsky0901 已提交
130
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
131
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
132
REGISTER_OP_CPU_KERNEL(unpool,
S
sweetsky0901 已提交
133 134
              ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
              ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
135
REGISTER_OP_CPU_KERNEL(unpool_grad,
S
sweetsky0901 已提交
136 137
            ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>,
            ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
138