elementwise_add_op.h 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

16 17
#include <algorithm>
#include <utility>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
21
#include "paddle/fluid/operators/math/blas.h"
22
#include "paddle/fluid/operators/math/math_function.h"
23

24
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
25
#ifdef __NVCC__
26 27
#include <cuda.h>
#include <cuda_fp16.h>
28
#include "cub/cub.cuh"
29
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
30
#endif
31 32 33 34 35 36
#ifdef __HIPCC__
#include <hip/hip_fp16.h>
#include <hip/hip_runtime.h>
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
37
#endif
W
wanghuancoder 已提交
38

G
gongweibao 已提交
39 40 41
namespace paddle {
namespace operators {

42
template <typename DeviceContext, typename T>
43 44 45
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
46
  int axis = ctx.Attr<int>("axis");
47 48 49
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
50 51 52 53 54 55
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
56 57
}

58 59 60 61 62 63
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
64

65 66 67 68 69 70 71
template <typename DeviceContext, typename T, class Enable = void>
struct BroadcastElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};

Q
QI JUN 已提交
72
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
73
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
74
 public:
C
chengduo 已提交
75 76 77 78
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
79
    z->mutable_data<T>(ctx.GetPlace());
80
    auto dims_equal = x->dims() == y->dims();
81
    if (dims_equal) {
82 83
      SameDimsElemwiseAdd<DeviceContext, T> same_dims_add;
      same_dims_add(ctx, x, y, z);
84
    } else {
85 86
      BroadcastElemwiseAdd<DeviceContext, T> broadcast_add;
      broadcast_add(ctx, x, y, z);
87
    }
G
gongweibao 已提交
88 89 90 91
  }
};

template <typename T>
Y
Yu Yang 已提交
92 93
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
94 95
};

96
template <typename DeviceContext, typename T>
97 98 99 100 101 102 103
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
104 105
  int axis = ctx.Attr<int>("axis");

106 107 108 109
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
110 111
}

112
template <typename DeviceContext, typename T>
113 114 115
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
116 117 118 119 120
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
121 122 123 124 125 126 127 128 129 130 131 132
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

133
template <typename DeviceContext, typename T>
134
typename std::enable_if<
135 136
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
137 138 139 140 141 142
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
143 144
}

145 146 147
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

148 149 150 151 152 153 154 155 156 157 158 159 160 161
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T *pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}
162 163 164 165 166 167 168 169
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
                                size_t width, size_t height) {
  __shared__ T sdata[BLOCK_H][BLOCK_W + 1];
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t width_stride = gridDim.x * blockDim.x;
  size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
                      ((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
W
wangchaochaohu 已提交
170 171
  size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
                       ((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
172 173 174 175 176 177 178

#pragma unroll
  for (size_t w = idx; w < full_width; w += width_stride) {
    sdata[threadIdx.y][threadIdx.x] = 0;
    __syncthreads();
    size_t offset = w + threadIdx.y * width;
#pragma unroll
W
wangchaochaohu 已提交
179
    for (size_t h = threadIdx.y; h < full_height;
180 181
         h += BLOCK_H) {  // block-stride loop across matrix height
      sdata[threadIdx.y][threadIdx.x] +=
W
wangchaochaohu 已提交
182
          (w < width && h < height) ? in[offset] : (static_cast<T>(0));
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
      offset += width * BLOCK_H;
    }
    __syncthreads();

    T val = sdata[threadIdx.x][threadIdx.y];
    for (int i = warpSize >> 1; i > 0; i >>= 1)
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);

    __syncthreads();
    if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
    __syncthreads();
    if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
  }
}

198
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
199 200 201 202
template <int SIZE>
__global__ void VecFP16MatrixColReduce(const __half2 *__restrict__ in,
                                       __half2 *__restrict__ out, size_t width,
                                       size_t height) {
203
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
204 205 206 207 208 209 210 211 212 213 214 215 216
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int by = blockIdx.y;
  __half2 zero = __half2half2(static_cast<__half>(0));
  const int cols = width / 2;
  for (; idx < cols; idx += blockDim.x * gridDim.x) {
    __half2 sum = zero;
    for (int row = 0; row < SIZE; row++) {
      int index = idx + (row + by * SIZE) * cols;
      sum = __hadd2(sum, in[index]);
    }

    atomicAdd(&(out[idx]), sum);
  }
217
#endif
218
}
219
#endif
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
template <typename T>
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                      size_t width, size_t height) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;

  for (; idx < width; idx += blockDim.x * gridDim.x) {
    T sum = static_cast<T>(0);
    for (int row = 0; row < height; row++) {
      sum += in[idx + row * width];
    }

    out[idx] = sum;
  }
}

template <typename T, int VEC_SIZE>
__global__ void VecMatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                         size_t width, size_t height) {
  using LoadT = AlignedVector<T, VEC_SIZE>;
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int w = idx * VEC_SIZE;
  int width_stride = blockDim.x * gridDim.x * VEC_SIZE;
243
  for (; w < width; w += width_stride) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    T zero = static_cast<T>(0);
    T sum[VEC_SIZE] = {zero};
    T tmp_vec[VEC_SIZE] = {zero};
    LoadT *tmp_ptr = reinterpret_cast<LoadT *>(&tmp_vec);
    for (int row = 0; row < height; row++) {
      int offset = width * row + w;
      *tmp_ptr = *reinterpret_cast<const LoadT *>(&in[offset]);
      for (int v = 0; v < VEC_SIZE; v++) {
        sum[v] += tmp_vec[v];
      }
    }

    for (int v = 0; v < VEC_SIZE; v++) out[w + v] = sum[v];
  }
}
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
                           const framework::DDim &dy_dims,
                           const framework::DDim &dout_dims, int axis) {
  auto smaller_dims = dx_dims;
  auto bigger_dims = dy_dims;
  auto smaller_dims_size = smaller_dims.size();
  auto bigger_dims_size = bigger_dims.size();
  int smaller_ignore_size = 0;
  int bigger_ignore_size = 0;
  for (int i = 0; i < smaller_dims_size; i++) {
    if (smaller_dims[i] == 1)
      smaller_ignore_size++;
    else
      break;
  }
  for (int i = 0; i < bigger_dims_size; i++) {
    if (bigger_dims[i] == 1)
      bigger_ignore_size++;
    else
      break;
  }

  int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
  int bigger_real_size = bigger_dims.size() - bigger_ignore_size;

  if (smaller_real_size == bigger_real_size) return false;

  if (bigger_real_size < smaller_real_size) {
    smaller_dims = dy_dims;
    bigger_dims = dx_dims;
    std::swap(smaller_real_size, bigger_real_size);
  }
  int big_size = bigger_dims.size();
  int small_size = smaller_dims.size();
  for (int i = 1; i <= smaller_real_size; i++) {
    if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
  }

  if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
    return false;
  }

  return true;
}

306
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
307 308 309 310
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
311 312 313 314 315
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
316 317
#endif

Q
QI JUN 已提交
318
template <typename DeviceContext, typename T>
319
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
320
 public:
C
chengduo 已提交
321
  void Compute(const framework::ExecutionContext &ctx) const override {
322 323
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
324 325
    using Tensor = framework::Tensor;

326 327
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
328 329 330
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
331
    // skip out
C
chengduo 已提交
332
    auto *out = dout;
333

334 335
// TODO(@wangchaochaohu, zhouwei35): Fix conv_transpose2d API(dataformat NHWC)
// error in Windows
336
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
#ifdef __NVCC__

    int axis = ctx.Attr<int>("axis");
    if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
        dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
        RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
      auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
      auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
      auto *dout_data = dout->data<T>();
      auto stream = ctx.cuda_device_context().stream();
      auto *out_data = dx_data;
      int width = dx->numel();
      int height = dout->numel() / width;
      if (dx->dims() == dout->dims()) {
        width = dy->numel();
        height = dout->numel() / width;
        out_data = dy_data;
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      } else {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
362 363 364 365 366 367 368 369 370 371 372 373 374 375
      // special optimization using cub
      if (width == 1) {
        int nums = height;
        size_t temp_storage_bytes = 0;
        auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes,
                                          dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
        framework::Tensor tmp;
        auto *temp_storage = tmp.mutable_data<uint8_t>(
            framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
            ctx.GetPlace());
        err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes,
                                     dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
W
wangchaochaohu 已提交
376
        return;
377
      }
378 379 380 381 382 383 384 385 386 387

      constexpr int block_x = 32;
      constexpr int block_y = 32;
      dim3 blocks(block_x, block_y);

      int max_physical_threads =
          ctx.cuda_device_context().GetMaxPhysicalThreadCount();
      int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
      int theory_block = (width + blocks.x - 1) / blocks.x;
      dim3 grids(std::min(theory_block, max_blocks));
388
#if CUDA_VERSION >= 10000
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
      if (std::is_same<T, paddle::platform::float16>::value && width < 2048 &&
          width % 2 == 0 && height % 64 == 0) {
        auto &dev_ctx =
            ctx.template device_context<platform::CUDADeviceContext>();
        math::SetConstant<platform::CUDADeviceContext, T> functor;
        if (dout->dims() == dx->dims())
          functor(dev_ctx, dy, static_cast<T>(0));
        else
          functor(dev_ctx, dx, static_cast<T>(0));
        const __half2 *ptr1 = reinterpret_cast<const __half2 *>(dout_data);
        __half2 *ptr2 = reinterpret_cast<__half2 *>(out_data);
        const int threads = 128;
        dim3 grid(1, (height + 64 - 1) / 64);
        VecFP16MatrixColReduce<64><<<grid, threads, 0, stream>>>(ptr1, ptr2,
                                                                 width, height);
        return;
      }
406
#endif
407 408 409 410 411 412 413

      if (width / height < 32) {
        MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
            dout_data, out_data, width, height);
      } else {
        size_t thread_nums = 1024;
        size_t block_nums = (width + thread_nums - 1) / thread_nums;
414
        int vec_size = VectorizedSize<T>(dout_data);
415 416 417 418 419 420 421 422 423 424
        if (vec_size == 4 && width % 4 == 0) {
          block_nums = (width / vec_size + thread_nums - 1) / thread_nums;
          VecMatrixReduceLongWidth<T,
                                   4><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        } else {
          MatrixReduceLongWidth<T><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        }
      }
425 426 427 428 429
      return;
    }

#endif
#endif
430 431 432 433 434 435 436 437 438 439 440 441 442 443
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
444
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
445
    } else {
446 447
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
448
    }
G
gongweibao 已提交
449 450 451
  }
};

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
472 473
      default_elementwise_add<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                ddout);
474 475 476 477
    }
  }
};

G
gongweibao 已提交
478 479
}  // namespace operators
}  // namespace paddle