elementwise_add_op.h 16.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

16 17
#include <algorithm>
#include <utility>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
21
#include "paddle/fluid/operators/math/blas.h"
22
#include "paddle/fluid/operators/math/math_function.h"
23 24 25 26 27
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#endif
W
wanghuancoder 已提交
28

G
gongweibao 已提交
29 30 31
namespace paddle {
namespace operators {

32
template <typename DeviceContext, typename T>
33 34 35
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
36
  int axis = ctx.Attr<int>("axis");
37 38 39
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
40 41 42 43 44 45
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
46 47
}

48 49 50 51 52 53
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
54

Q
QI JUN 已提交
55
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
56
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
57
 public:
C
chengduo 已提交
58 59 60 61
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
62
    z->mutable_data<T>(ctx.GetPlace());
63
    auto dims_equal = x->dims() == y->dims();
64
    if (dims_equal) {
65 66
      SameDimsElemwiseAdd<DeviceContext, T> same_dims_add;
      same_dims_add(ctx, x, y, z);
67
    } else {
68
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
69
    }
G
gongweibao 已提交
70 71 72 73
  }
};

template <typename T>
Y
Yu Yang 已提交
74 75
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
76 77
};

78
template <typename DeviceContext, typename T>
79 80 81 82 83 84 85
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
86 87
  int axis = ctx.Attr<int>("axis");

88 89 90 91
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
92 93
}

94
template <typename DeviceContext, typename T>
95 96 97
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
98 99 100 101 102
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
103 104 105 106 107 108 109 110 111 112 113 114
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

115
template <typename DeviceContext, typename T>
116
typename std::enable_if<
117 118
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
119 120 121 122 123 124
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
125 126
}

127 128 129
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

130 131 132 133 134 135 136 137 138 139 140 141 142 143
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T *pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}
144 145 146 147 148 149 150 151
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
                                size_t width, size_t height) {
  __shared__ T sdata[BLOCK_H][BLOCK_W + 1];
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t width_stride = gridDim.x * blockDim.x;
  size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
                      ((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
W
wangchaochaohu 已提交
152 153
  size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
                       ((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
154 155 156 157 158 159 160

#pragma unroll
  for (size_t w = idx; w < full_width; w += width_stride) {
    sdata[threadIdx.y][threadIdx.x] = 0;
    __syncthreads();
    size_t offset = w + threadIdx.y * width;
#pragma unroll
W
wangchaochaohu 已提交
161
    for (size_t h = threadIdx.y; h < full_height;
162 163
         h += BLOCK_H) {  // block-stride loop across matrix height
      sdata[threadIdx.y][threadIdx.x] +=
W
wangchaochaohu 已提交
164
          (w < width && h < height) ? in[offset] : (static_cast<T>(0));
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      offset += width * BLOCK_H;
    }
    __syncthreads();

    T val = sdata[threadIdx.x][threadIdx.y];
    for (int i = warpSize >> 1; i > 0; i >>= 1)
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);

    __syncthreads();
    if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
    __syncthreads();
    if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
  }
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template <int SIZE>
__global__ void VecFP16MatrixColReduce(const __half2 *__restrict__ in,
                                       __half2 *__restrict__ out, size_t width,
                                       size_t height) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int by = blockIdx.y;
  __half2 zero = __half2half2(static_cast<__half>(0));
  const int cols = width / 2;
  for (; idx < cols; idx += blockDim.x * gridDim.x) {
    __half2 sum = zero;
    for (int row = 0; row < SIZE; row++) {
      int index = idx + (row + by * SIZE) * cols;
      sum = __hadd2(sum, in[index]);
    }

    atomicAdd(&(out[idx]), sum);
  }
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
template <typename T>
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                      size_t width, size_t height) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;

  for (; idx < width; idx += blockDim.x * gridDim.x) {
    T sum = static_cast<T>(0);
    for (int row = 0; row < height; row++) {
      sum += in[idx + row * width];
    }

    out[idx] = sum;
  }
}

template <typename T, int VEC_SIZE>
__global__ void VecMatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                         size_t width, size_t height) {
  using LoadT = AlignedVector<T, VEC_SIZE>;
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int w = idx * VEC_SIZE;
  int width_stride = blockDim.x * gridDim.x * VEC_SIZE;
221
  for (; w < width; w += width_stride) {
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    T zero = static_cast<T>(0);
    T sum[VEC_SIZE] = {zero};
    T tmp_vec[VEC_SIZE] = {zero};
    LoadT *tmp_ptr = reinterpret_cast<LoadT *>(&tmp_vec);
    for (int row = 0; row < height; row++) {
      int offset = width * row + w;
      *tmp_ptr = *reinterpret_cast<const LoadT *>(&in[offset]);
      for (int v = 0; v < VEC_SIZE; v++) {
        sum[v] += tmp_vec[v];
      }
    }

    for (int v = 0; v < VEC_SIZE; v++) out[w + v] = sum[v];
  }
}
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
                           const framework::DDim &dy_dims,
                           const framework::DDim &dout_dims, int axis) {
  auto smaller_dims = dx_dims;
  auto bigger_dims = dy_dims;
  auto smaller_dims_size = smaller_dims.size();
  auto bigger_dims_size = bigger_dims.size();
  int smaller_ignore_size = 0;
  int bigger_ignore_size = 0;
  for (int i = 0; i < smaller_dims_size; i++) {
    if (smaller_dims[i] == 1)
      smaller_ignore_size++;
    else
      break;
  }
  for (int i = 0; i < bigger_dims_size; i++) {
    if (bigger_dims[i] == 1)
      bigger_ignore_size++;
    else
      break;
  }

  int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
  int bigger_real_size = bigger_dims.size() - bigger_ignore_size;

  if (smaller_real_size == bigger_real_size) return false;

  if (bigger_real_size < smaller_real_size) {
    smaller_dims = dy_dims;
    bigger_dims = dx_dims;
    std::swap(smaller_real_size, bigger_real_size);
  }
  int big_size = bigger_dims.size();
  int small_size = smaller_dims.size();
  for (int i = 1; i <= smaller_real_size; i++) {
    if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
  }

  if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
    return false;
  }

  return true;
}

284 285 286 287 288
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
289 290 291 292 293
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
294 295
#endif

Q
QI JUN 已提交
296
template <typename DeviceContext, typename T>
297
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
298
 public:
C
chengduo 已提交
299
  void Compute(const framework::ExecutionContext &ctx) const override {
300 301
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
302 303
    using Tensor = framework::Tensor;

304 305
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
306 307 308
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
309
    // skip out
C
chengduo 已提交
310
    auto *out = dout;
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

    int axis = ctx.Attr<int>("axis");
    if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
        dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
        RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
      auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
      auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
      auto *dout_data = dout->data<T>();
      auto stream = ctx.cuda_device_context().stream();
      auto *out_data = dx_data;
      int width = dx->numel();
      int height = dout->numel() / width;
      if (dx->dims() == dout->dims()) {
        width = dy->numel();
        height = dout->numel() / width;
        out_data = dy_data;
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      } else {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
338 339 340 341 342 343 344 345 346 347 348 349 350 351
      // special optimization using cub
      if (width == 1) {
        int nums = height;
        size_t temp_storage_bytes = 0;
        auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes,
                                          dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
        framework::Tensor tmp;
        auto *temp_storage = tmp.mutable_data<uint8_t>(
            framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
            ctx.GetPlace());
        err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes,
                                     dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
W
wangchaochaohu 已提交
352
        return;
353
      }
354 355 356 357 358 359 360 361 362 363

      constexpr int block_x = 32;
      constexpr int block_y = 32;
      dim3 blocks(block_x, block_y);

      int max_physical_threads =
          ctx.cuda_device_context().GetMaxPhysicalThreadCount();
      int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
      int theory_block = (width + blocks.x - 1) / blocks.x;
      dim3 grids(std::min(theory_block, max_blocks));
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
      if (std::is_same<T, paddle::platform::float16>::value && width < 2048 &&
          width % 2 == 0 && height % 64 == 0) {
        auto &dev_ctx =
            ctx.template device_context<platform::CUDADeviceContext>();
        math::SetConstant<platform::CUDADeviceContext, T> functor;
        if (dout->dims() == dx->dims())
          functor(dev_ctx, dy, static_cast<T>(0));
        else
          functor(dev_ctx, dx, static_cast<T>(0));
        const __half2 *ptr1 = reinterpret_cast<const __half2 *>(dout_data);
        __half2 *ptr2 = reinterpret_cast<__half2 *>(out_data);
        const int threads = 128;
        dim3 grid(1, (height + 64 - 1) / 64);
        VecFP16MatrixColReduce<64><<<grid, threads, 0, stream>>>(ptr1, ptr2,
                                                                 width, height);
        return;
      }
381 382 383 384 385 386 387

      if (width / height < 32) {
        MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
            dout_data, out_data, width, height);
      } else {
        size_t thread_nums = 1024;
        size_t block_nums = (width + thread_nums - 1) / thread_nums;
388
        int vec_size = VectorizedSize<T>(dout_data);
389 390 391 392 393 394 395 396 397 398
        if (vec_size == 4 && width % 4 == 0) {
          block_nums = (width / vec_size + thread_nums - 1) / thread_nums;
          VecMatrixReduceLongWidth<T,
                                   4><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        } else {
          MatrixReduceLongWidth<T><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        }
      }
399 400 401 402 403
      return;
    }

#endif
#endif
404 405 406 407 408 409 410 411 412 413 414 415 416 417
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
418
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
419
    } else {
420 421
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
422
    }
G
gongweibao 已提交
423 424 425
  }
};

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
446 447
      default_elementwise_add<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                ddout);
448 449 450 451
    }
  }
};

G
gongweibao 已提交
452 453
}  // namespace operators
}  // namespace paddle