executor.cc 19.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
Z
Zeng Jinle 已提交
33
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
34
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
36
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
39

D
dzhwinter 已提交
40
DECLARE_bool(benchmark);
41
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
42 43 44

namespace paddle {
namespace framework {
X
Xin Pan 已提交
45 46 47 48 49
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
50

Q
Qiao Longfei 已提交
51
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
52 53 54 55 56
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
57 58 59
  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
60 61 62
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
63
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
64
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
65
  }
66 67 68 69 70 71

  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
  }

S
sneaxiy 已提交
72
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
73
}
Y
Yu Yang 已提交
74

Q
Qiao Longfei 已提交
75
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
76
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
77
}
Y
Yu Yang 已提交
78

D
dzhwinter 已提交
79
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
80

81 82 83 84 85 86 87 88 89 90
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache, unless explicitly
  // (as set in constructor) marked not to do so
  // this is needed to have mkl-dnn unit tests working
  if (platform::is_cpu_place(place_)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place_);
    dev_ctx->ResetBlobMap();
91
    platform::set_cur_paddle_data_layout(paddle::framework::DataLayout::kNCHW);
92 93 94 95
  }
#endif
}

Y
Yancey1989 已提交
96
void Executor::Close() {
W
Wu Yi 已提交
97
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
98 99
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
100 101 102
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
103
#endif
Y
Yancey1989 已提交
104
}
W
Wu Yi 已提交
105

L
Liu Yiqun 已提交
106 107
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
108
  VLOG(3) << "Creating Variables for block " << block_id;
L
Liu Yiqun 已提交
109
  auto& global_block = pdesc.Block(block_id);
110 111 112 113 114 115 116 117 118 119 120 121
  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }
  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
122
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
123 124
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
125 126
      } else {
        auto* ptr = scope->Var(var->Name());
127
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
128 129
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
130 131 132 133 134
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
135
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
136 137
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
138 139 140 141
    }
  }
}

142 143 144
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
D
dongdaxiang 已提交
145 146
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
H
hutuxian 已提交
147
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
148 149
  PADDLE_ENFORCE_EQ(success, true, "Fail to parse TrainerDesc from string:\n%s",
                    trainer_desc_str.c_str());
D
dongdaxiang 已提交
150 151 152 153 154 155 156 157
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
158
  trainer->SetScope(scope);
D
dongdaxiang 已提交
159 160 161 162 163
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
164 165 166 167 168 169
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
  PADDLE_ENFORCE_NE(trainer, nullptr,
                    "Trainer is nullptr, invoke InitForDataset first");
D
dongdaxiang 已提交
170 171 172
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
D
Dong Daxiang 已提交
173 174 175
}

void Executor::ReleaseTrainer(std::shared_ptr<TrainerBase> trainer) {
D
dongdaxiang 已提交
176 177 178
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
179

Y
Yu Yang 已提交
180
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
181 182
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
183
                   bool force_disable_gc, bool keep_kid_scopes) {
X
Xin Pan 已提交
184
  platform::RecordBlock b(block_id);
185
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
186
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
187 188
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars,
                     keep_kid_scopes);
Q
qijun 已提交
189 190
}

191 192 193 194 195 196 197
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
198
    const BlockDesc& block,
L
Liu Yiqun 已提交
199
    const std::map<std::string, const LoDTensor*>& feed_targets,
200 201
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
202
  for (auto* op : block.AllOps()) {
203 204
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
205
      // The input variable's name of feed_op should be feed_holder_name.
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

221
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
222
      // When feed operator are present, so should be feed_holder.
223 224 225 226 227 228 229
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
230 231 232 233 234 235 236 237 238 239 240 241
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
242 243
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
244 245
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
246
  for (auto* op : block.AllOps()) {
247 248
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
249
      // The output variable's name of fetch_op should be fetch_holder_name.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

265
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
266
      // When fetch operator are present, so should be fetch_holder.
267 268 269 270 271 272 273
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
274 275 276 277 278 279
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
280 281
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
282 283
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
284
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
285
  platform::RecordBlock b(kProgramId);
286
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
287
  bool has_feed_ops =
288
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
289
  bool has_fetch_ops =
290
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
291 292

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
293
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
294
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
295 296
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
297
  }
298 299
  auto* global_block = copy_program->MutableBlock(0);

300
  if (!has_feed_ops) {
301 302
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
303
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
304 305 306
    feed_holder->SetPersistable(true);

    int i = 0;
307
    for (auto& feed_target : (*feed_targets)) {
308
      std::string var_name = feed_target.first;
M
minqiyang 已提交
309
      VLOG(3) << "feed target's name: " << var_name;
310 311 312 313 314 315 316 317 318 319 320 321 322

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

323
  if (!has_fetch_ops) {
324 325
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
326
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
327 328 329
    fetch_holder->SetPersistable(true);

    int i = 0;
330
    for (auto& fetch_target : (*fetch_targets)) {
331
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
332
      VLOG(3) << "fetch target's name: " << var_name;
333 334 335 336 337 338 339 340 341 342 343 344 345

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

346
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
347 348 349
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
350 351
}

Q
Qiao Longfei 已提交
352
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
353
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
354
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
355 356
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
357 358 359 360 361
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
S
sneaxiy 已提交
362
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
363
  return ctx;
Y
Yu Yang 已提交
364 365
}

T
refine  
typhoonzero 已提交
366
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
367
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
368 369
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
370 371 372 373
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
374
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
375
  size_t idx = 0;
T
typhoonzero 已提交
376 377
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
378
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
379 380 381 382
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
383 384 385 386 387
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
388
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
389
    ++idx;
T
typhoonzero 已提交
390 391 392 393
  }
  return result;
}

394 395 396 397 398
void Executor::RunPartialPreparedContext(ExecutorPrepareContext* ctx,
                                         Scope* scope, int64_t start_op_index,
                                         int64_t end_op_index,
                                         bool create_local_scope,
                                         bool create_vars, bool keep_kids) {
399
  platform::RecordBlock b(kProgramId);
400
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
401 402 403 404
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
405 406
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
407
  }
Y
Yu Yang 已提交
408

S
sneaxiy 已提交
409
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
410
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
411
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
412 413
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
414
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
415
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
416 417
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
418
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
419 420 421
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
422
#endif
S
sneaxiy 已提交
423 424
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
425 426 427 428 429
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

430 431
  for (int64_t i = start_op_index; i < end_op_index; ++i) {
    auto& op = ctx->ops_[i];
432
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
433
    if (gc) {
S
sneaxiy 已提交
434
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
435
    }
Y
Yu Yang 已提交
436
  }
S
sneaxiy 已提交
437

S
fix bug  
sneaxiy 已提交
438
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
439

Q
qiaolongfei 已提交
440
  if (local_scope != scope) {
Y
Yu Yang 已提交
441
    scope->DeleteScope(local_scope);
442
  } else {
Q
qiaolongfei 已提交
443 444 445 446 447
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
448 449
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
450

Q
qiaolongfei 已提交
451 452
      scope->DropKids();
    }
Y
Yu Yang 已提交
453 454 455
  }
}

456 457 458 459 460 461 462 463 464
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
  int64_t start_op_index = 0;
  int64_t end_op_index = ctx->ops_.size();
  RunPartialPreparedContext(ctx, scope, start_op_index, end_op_index,
                            create_local_scope, create_vars, keep_kids);
}

465 466
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
467
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
468 469 470
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
471 472
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

473
  PADDLE_ENFORCE(
474
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
475 476
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
477
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
478 479
      "Program in the prepared context should has fetch_ops.");

480 481 482 483 484
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
485 486
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
487 488 489
    }
  }

W
Wu Yi 已提交
490
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
491 492 493 494 495 496

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
497
      *(*fetch_targets)[fetch_target_name] =
498 499 500 501 502
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

503 504
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
505
  VLOG(3) << "use_mkldnn=True";
506 507 508 509 510 511 512 513
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
514 515 516
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
517 518
#endif
}
Q
qijun 已提交
519 520
}  // namespace framework
}  // namespace paddle