executor.cc 18.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
34
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
37

38
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
39
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
40
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
41 42
#endif

D
dzhwinter 已提交
43
DECLARE_bool(benchmark);
44
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
45 46 47

namespace paddle {
namespace framework {
X
Xin Pan 已提交
48 49 50 51 52
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
53

Q
Qiao Longfei 已提交
54
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
55 56 57 58 59 60 61 62
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
63
  }
S
sneaxiy 已提交
64
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
65
}
Y
Yu Yang 已提交
66

Q
Qiao Longfei 已提交
67
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
68
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
69
}
Y
Yu Yang 已提交
70

D
dzhwinter 已提交
71
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
72

Y
Yancey1989 已提交
73
void Executor::Close() {
W
Wu Yi 已提交
74
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
75 76
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
77 78 79
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
80
#endif
Y
Yancey1989 已提交
81
}
W
Wu Yi 已提交
82

L
Liu Yiqun 已提交
83 84 85
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
86 87 88 89 90 91 92 93 94 95 96 97 98 99

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
100
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
101 102
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
103 104
      } else {
        auto* ptr = scope->Var(var->Name());
105
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
106 107
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
108 109 110 111 112
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
113
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
114 115
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
116 117 118 119
    }
  }
}

D
dongdaxiang 已提交
120
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
X
xujiaqi01 已提交
121
                              Dataset* dataset,
D
dongdaxiang 已提交
122
                              const std::string& trainer_desc_str) {
D
dongdaxiang 已提交
123 124 125 126 127 128 129 130 131 132 133 134
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
  google::protobuf::TextFormat::ParseFromString(trainer_desc_str,
                                                &trainer_desc);
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
135
  trainer->SetScope(scope);
D
dongdaxiang 已提交
136 137 138 139 140 141 142 143 144 145 146 147
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  return;
}
D
dongdaxiang 已提交
148

Y
Yu Yang 已提交
149
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
150 151 152
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
153
  platform::RecordBlock b(block_id);
154
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
155
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
156
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
157 158
}

159 160 161 162 163 164 165
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
166
    const BlockDesc& block,
L
Liu Yiqun 已提交
167
    const std::map<std::string, const LoDTensor*>& feed_targets,
168 169
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
170
  for (auto* op : block.AllOps()) {
171 172
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
173
      // The input variable's name of feed_op should be feed_holder_name.
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

189
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
190
      // When feed operator are present, so should be feed_holder.
191 192 193 194 195 196 197
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
198 199 200 201 202 203 204 205 206 207 208 209
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
210 211
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
212 213
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
214
  for (auto* op : block.AllOps()) {
215 216
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
217
      // The output variable's name of fetch_op should be fetch_holder_name.
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

233
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
234
      // When fetch operator are present, so should be fetch_holder.
235 236 237 238 239 240 241
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
242 243 244 245 246
  }

  return fetch_count > 0;
}

247 248 249
std::unique_ptr<ExecutorPrepareContext> Executor::PrepareCtxCache(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
250
  return Prepare(program, block_id, skip_ref_cnt_vars, force_disable_gc);
251 252
}

253
void Executor::Run(const ProgramDesc& program, Scope* scope,
254 255
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
256 257
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
258
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
259
  platform::RecordBlock b(kProgramId);
260
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
261
  bool has_feed_ops =
262
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
263
  bool has_fetch_ops =
264
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
265 266

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
267
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
268
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
269 270
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
271
  }
272 273
  auto* global_block = copy_program->MutableBlock(0);

274
  if (!has_feed_ops) {
275 276
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
277
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
278 279 280
    feed_holder->SetPersistable(true);

    int i = 0;
281
    for (auto& feed_target : (*feed_targets)) {
282
      std::string var_name = feed_target.first;
M
minqiyang 已提交
283
      VLOG(3) << "feed target's name: " << var_name;
284 285 286 287 288 289 290 291 292 293 294 295 296

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

297
  if (!has_fetch_ops) {
298 299
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
300
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
301 302 303
    fetch_holder->SetPersistable(true);

    int i = 0;
304
    for (auto& fetch_target : (*fetch_targets)) {
305
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
306
      VLOG(3) << "fetch target's name: " << var_name;
307 308 309 310 311 312 313 314 315 316 317 318 319

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

320
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
321 322 323
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
324 325
}

Q
Qiao Longfei 已提交
326
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
327
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
328
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
329 330
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
331 332 333 334 335
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
336
#ifdef PADDLE_WITH_NGRAPH
337
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
338 339 340 341
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
342
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
343
  return ctx;
Y
Yu Yang 已提交
344 345
}

T
refine  
typhoonzero 已提交
346
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
347
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
348 349
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
350 351 352 353
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
354
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
355
  size_t idx = 0;
T
typhoonzero 已提交
356 357
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
358
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
359 360 361 362
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
363 364 365 366 367
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
368
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
369
    ++idx;
T
typhoonzero 已提交
370 371 372 373
  }
  return result;
}

Y
Yu Yang 已提交
374
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
375 376
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
377
  platform::RecordBlock b(kProgramId);
378
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
379 380 381 382
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
383 384
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
385
  }
Y
Yu Yang 已提交
386

S
sneaxiy 已提交
387
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
388
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
389 390 391
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
392 393
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
394
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
395
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
396 397
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
398
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
399 400 401
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
402
#endif
S
sneaxiy 已提交
403 404
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
405 406 407
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
408 409
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
410 411 412
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
413 414
  }

Y
Yu Yang 已提交
415
  for (auto& op : ctx->ops_) {
416
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
417
    if (gc) {
S
sneaxiy 已提交
418
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
419
    }
Y
Yu Yang 已提交
420
  }
S
sneaxiy 已提交
421

S
fix bug  
sneaxiy 已提交
422
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
423

Q
qiaolongfei 已提交
424
  if (local_scope != scope) {
Y
Yu Yang 已提交
425
    scope->DeleteScope(local_scope);
426
  } else {
Q
qiaolongfei 已提交
427 428 429 430 431
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
432 433
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
434 435
      scope->DropKids();
    }
Y
Yu Yang 已提交
436 437 438
  }
}

439 440
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
441
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
442 443 444
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
445 446
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

447
  PADDLE_ENFORCE(
448
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
449 450
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
451
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
452 453
      "Program in the prepared context should has fetch_ops.");

454 455 456 457 458
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
459 460
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
461 462 463
    }
  }

W
Wu Yi 已提交
464
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
465 466 467 468 469 470

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
471
      *(*fetch_targets)[fetch_target_name] =
472 473 474 475 476
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

477 478
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
479
  VLOG(3) << "use_mkldnn=True";
480 481 482 483 484 485 486 487
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
488 489 490
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
491 492
#endif
}
Q
qijun 已提交
493 494
}  // namespace framework
}  // namespace paddle