ipu_compiler.cc 30.3 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

A
Allen Guo 已提交
15
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
J
jianghaicheng 已提交
16

A
Allen Guo 已提交
17 18 19 20
#include <popart/adam.hpp>
#include <popart/adaptive.hpp>
#include <popart/optimizer.hpp>
#include <popart/sgd.hpp>
A
Allen Guo 已提交
21

J
jianghaicheng 已提交
22
#include "paddle/fluid/framework/ir/graph_helper.h"
A
Allen Guo 已提交
23
#include "paddle/fluid/platform/device/ipu/ipu_utils.h"
J
jianghaicheng 已提交
24 25 26 27 28

namespace paddle {
namespace platform {
namespace ipu {

A
Allen Guo 已提交
29 30
popart::AdamMode AdamModeFromStr(const std::string& str,
                                 const bool& use_no_bias_optimizer) {
A
Allen Guo 已提交
31
  if (str == "adam") {
A
Allen Guo 已提交
32 33 34 35
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Adam;
    else
      return popart::AdamMode::AdamNoBias;
A
Allen Guo 已提交
36 37 38
  } else if (str == "adamax") {
    return popart::AdamMode::AdaMax;
  } else if (str == "lamb") {
A
Allen Guo 已提交
39 40 41 42
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Lamb;
    else
      return popart::AdamMode::LambNoBias;
A
Allen Guo 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdamMode: %s, AdamMode must be one of these values: adam, "
        "adamax or lamb",
        str));
  }
}

popart::AdaptiveMode AdaptiveModeFromStr(const std::string& str) {
  if (str == "adadelta") {
    return popart::AdaptiveMode::AdaDelta;
  } else if (str == "adagrad") {
    return popart::AdaptiveMode::AdaGrad;
  } else if (str == "rmsprop") {
    return popart::AdaptiveMode::RMSProp;
  } else if (str == "centered_rmsprop") {
    return popart::AdaptiveMode::CenteredRMSProp;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdaptiveMode: %s, AdaptiveMode must be one of these values: "
        "adadelta, adagrad, rmsprop or centered_rmsprop",
        str));
  }
}

popart::WeightDecayMode WeightDecayModeFromStr(const std::string& str) {
  if (str == "decay") {
    return popart::WeightDecayMode::Decay;
  } else if (str == "l2_regularization") {
    return popart::WeightDecayMode::L2Regularization;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown WeightDecayMode: %s, WeightDecayMode must be decay or "
        "l2_regularization",
        str));
  }
}

A
Allen Guo 已提交
81 82 83 84 85 86 87 88 89 90 91
popart::DataType DataTypeFromStr(const std::string& str) {
  if (str == "FLOAT") {
    return popart::DataType::FLOAT;
  } else if (str == "FLOAT16") {
    return popart::DataType::FLOAT16;
  } else {
    PADDLE_THROW(
        platform::errors::Unimplemented("Unsupported DataType: %s", str));
  }
}

J
jianghaicheng 已提交
92
template <typename T>
A
Allen Guo 已提交
93
T GetAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
94 95 96 97 98 99 100 101
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

template <typename T>
A
Allen Guo 已提交
102
nonstd::optional<T> GetOptAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
103 104 105 106 107 108 109
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

A
Allen Guo 已提交
110 111 112 113 114 115 116 117 118 119
template <typename TI, typename TO>
TO GetCastSigAttrAllowNull(std::string attr, OpDesc* op_desc) {
  if (op_desc->HasAttr(attr)) {
    auto x = BOOST_GET_CONST(TI, op_desc->GetAttr(attr));
    return static_cast<TO>(x);
  } else {
    return {};
  }
}

A
Allen Guo 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132
GraphHelper::GraphHelper(const Graph* g) {
  graph = g;
  sorted_ops = framework::ir::TopologySortOperations(*g);
  for (auto* node : g->Nodes()) {
    nodes_id_map[node->id()] = node;
    if (node->IsVar()) {
      vars_name_map[node->Name()] = node;
      sorted_vars_id.push_back(node->id());
    }
  }
  std::sort(sorted_vars_id.begin(), sorted_vars_id.end());
}

A
Allen Guo 已提交
133 134 135 136 137
Compiler::Compiler() { RegisterOpFunc(); }

Compiler::~Compiler() {
  builder_.reset();
  resources_.reset();
J
jianghaicheng 已提交
138 139
}

A
Allen Guo 已提交
140
void Compiler::Prepare(const Graph* graph) {
A
Allen Guo 已提交
141 142
  builder_ = popart::Builder::create();
  resources_ = std::make_unique<CompilerResources>();
A
Allen Guo 已提交
143
  graph_helper_ = std::make_unique<GraphHelper>(graph);
A
Allen Guo 已提交
144 145 146 147 148 149 150 151 152 153 154
  // Set the flag of set_amp_for_all_
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_matmul") {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        set_amp_for_all_ = false;
        return;
      }
    }
  }
A
Allen Guo 已提交
155
}
J
jianghaicheng 已提交
156 157 158 159

void Compiler::RegisterOpFunc() {
  VLOG(10) << "enter Compiler::RegisterOpFunc";
#define INT_VEC std::vector<std::int64_t>
A
Allen Guo 已提交
160
#define INT32_VEC std::vector<std::int32_t>
J
jianghaicheng 已提交
161 162 163
#define FLOAT_VEC std::vector<float>
#define FLOAT float
#define INT std::int64_t
A
Allen Guo 已提交
164
#define INT32 std::int32_t
J
jianghaicheng 已提交
165 166 167 168 169 170 171
#define BOOL bool
#define STRING std::string
#define STRING_VEC std::vector<std::string*>
#define NONE

#define ARG(Type, Name) , GetAttrAllowNull<Type>(#Name, op_desc)
#define OPT_ARG(Type, Name) , GetOptAttrAllowNull<Type>(#Name, op_desc)
A
Allen Guo 已提交
172
#define SIG_ARG(TI, TO, Name) , GetCastSigAttrAllowNull<TI, TO>(#Name, op_desc)
J
jianghaicheng 已提交
173 174 175 176 177 178 179
#define POPART_CONST_ARG(Name) , const PopartConstant& Name
#define HOST_SIDE_CONST_ARG(Name) , const HostSideConstant& Name
#define POPART_ATTRIB_VEC_ARG(Name)
#define BODY_ARG(Name) NONE

  name_function_ = {
#define OP_DECL(FuncName, OnnxImpl, Args)                     \
A
Allen Guo 已提交
180
  {#FuncName, [&](OpDesc* op_desc) {                          \
J
jianghaicheng 已提交
181 182 183 184 185 186 187
     auto op_type = op_desc->Type();                          \
     VLOG(10) << "build op:" << op_type << " args " << #Args; \
     auto inputs = GetOpInputs(op_desc);                      \
     auto output_names = GetOpOutputs(op_desc);               \
     auto debug_context = BuildDebugContext(op_desc);         \
     auto aiGraphcoreOpset = builder_->aiGraphcoreOpset1();   \
     auto aiOnnxOpset = builder_->aiOnnxOpset11();            \
A
Allen Guo 已提交
188
     NameScopeHelper ns_helper(op_desc, builder_.get());      \
J
jianghaicheng 已提交
189
     auto output_ids = OnnxImpl(inputs Args, debug_context);  \
A
Allen Guo 已提交
190
     PostLower(output_ids, op_desc);                          \
J
jianghaicheng 已提交
191 192
     InsertTensors(output_names, output_ids);                 \
   }},  // NOLINT
A
Allen Guo 已提交
193 194
#include "paddle/fluid/platform/device/ipu/supported_ops_autogen.h"
#include "paddle/fluid/platform/device/ipu/supported_ops_custom.h"
J
jianghaicheng 已提交
195 196 197 198 199 200 201
  };

#undef OP_DECL
#undef BODY_ARG
#undef POPART_ATTRIB_VEC_ARG
#undef HOST_SIDE_CONST_ARG
#undef POPART_CONST_ARG
A
Allen Guo 已提交
202
#undef SIG_ARG
J
jianghaicheng 已提交
203 204 205 206 207 208
#undef OPT_ARG
#undef ARG
#undef NONE
#undef STRING_VEC
#undef STRING
#undef BOOL
A
Allen Guo 已提交
209
#undef INT32
J
jianghaicheng 已提交
210 211 212
#undef INT
#undef FLOAT
#undef FLOAT_VEC
A
Allen Guo 已提交
213
#undef INT32_VEC
J
jianghaicheng 已提交
214 215 216
#undef INT_VEC
}

A
Allen Guo 已提交
217
void Compiler::InitInputs(const std::vector<std::string>& feed_list) {
J
jianghaicheng 已提交
218
  for (const auto& feed_name : feed_list) {
A
Allen Guo 已提交
219 220 221 222 223 224 225 226 227 228 229
    auto* node = graph_helper_->vars_name_map[feed_name];
    auto* var_desc = node->Var();
    VLOG(10) << "feed_name= " << var_desc->Name();
    auto data_type = VarType2PopartType(var_desc->GetDataType());
    popart::TensorInfo input_info{data_type, var_desc->GetShape()};
    VLOG(10) << "popart input_info = " << input_info;
    popart::TensorId tensor_id =
        builder_->addInputTensor(input_info, feed_name);
    VLOG(10) << "popart input tensor id = " << tensor_id;
    resources_->inputs.push_back(tensor_id);
    resources_->tensors.emplace(var_desc->Name(), tensor_id);
J
jianghaicheng 已提交
230 231 232 233 234
  }
}

void Compiler::InitOutputs(const std::vector<std::string>& fetch_list) {
  for (const auto& fetch_name : fetch_list) {
A
Allen Guo 已提交
235 236 237 238 239 240
    auto tensor = resources_->tensors.find(fetch_name);
    PADDLE_ENFORCE_NE(
        tensor, resources_->tensors.end(),
        platform::errors::NotFound(
            "Output tensor %s is not found, please check the model.",
            fetch_name));
J
jianghaicheng 已提交
241 242 243
    VLOG(10) << "fetch_name= " << fetch_name;
    VLOG(10) << "popart output tensor id = " << tensor->second;
    builder_->addOutputTensor(tensor->second);
A
Allen Guo 已提交
244 245 246 247
    resources_->outputs.push_back(tensor->second);
  }
}

A
Allen Guo 已提交
248
void Compiler::LowerConstants(const Scope* scope) {
A
Allen Guo 已提交
249 250
  auto& kid_scope = scope->NewScope();
  VLOG(10) << "enter Compiler::LowerConstants";
A
Allen Guo 已提交
251
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_constant") {
      auto shape =
          BOOST_GET_CONST(std::vector<int64_t>, op_desc->GetAttr("dims"));
      auto dtype_ = BOOST_GET_CONST(int, op_desc->GetAttr("dtype"));
      auto dtype = PopartType2VarType(OnnxDtype2PopartType(dtype_));
      auto tensor_name = op_desc->Output("__outputs__")[0];
      auto* var = kid_scope.Var(tensor_name);
      VLOG(10) << "lowering constant: " << tensor_name;
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      ConstantOpAttrVisitor visitor(tensor, dtype);
      auto value = op_desc->GetAttr("value");
      boost::apply_visitor(visitor, value);
266
      auto ddim = phi::make_ddim(shape);
A
Allen Guo 已提交
267 268 269
      tensor->Resize(ddim);

      auto const_data = std::unique_ptr<popart::ConstVoidData>();
A
Allen Guo 已提交
270 271
      popart::TensorInfo tensor_info(PdDataType2PopartType(tensor->dtype()),
                                     shape);
A
Allen Guo 已提交
272
      const_data.reset(new popart::ConstVoidData(tensor->data(), tensor_info));
A
Allen Guo 已提交
273
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
274
      popart::TensorId result = builder_->aiOnnxOpset11().constant(*const_data);
A
Allen Guo 已提交
275
      PostLower(result, op_desc);
A
Allen Guo 已提交
276 277
      resources_->tensors.emplace(tensor_name, result);
    }
J
jianghaicheng 已提交
278
  }
A
Allen Guo 已提交
279
  VLOG(10) << "leave Compiler::LowerConstants";
J
jianghaicheng 已提交
280 281
}

A
Allen Guo 已提交
282
void Compiler::LowerWeights(const Scope* scope) {
A
Allen Guo 已提交
283
  VLOG(10) << "enter Compiler::LowerWeights";
A
Allen Guo 已提交
284
  // At this step, the graph doesn't contains optimizer related states
A
Allen Guo 已提交
285 286
  for (auto id : graph_helper_->sorted_vars_id) {
    auto* node = graph_helper_->nodes_id_map[id];
A
Allen Guo 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    // Weights are var node and Persistable
    if (node->IsVar() && !node->IsCtrlVar() && node->Var() &&
        node->Var()->Persistable()) {
      // Weights are Parameter in training mode
      if (ipu_strategy_->is_training && !node->Var()->IsParameter()) {
        continue;
      }
      auto var_name = node->Var()->Name();
      // Some op has same input and output tensor, like batchnorm
      if (resources_->tensors.count(var_name) != 0) {
        VLOG(10) << "found existed one, skip lowering Weight: " << var_name;
        continue;
      }
      VLOG(10) << "lowering weight: " << var_name;
      auto var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          var, platform::errors::NotFound("Tensor %s is not found in the scope",
                                          var_name));
      auto tensor = var->Get<framework::LoDTensor>();
      auto dtype = PdDataType2PopartType(tensor.dtype());
      auto shape = std::vector<int64_t>();
      for (size_t i = 0; i < tensor.dims().size(); ++i) {
        shape.push_back(tensor.dims().at(i));
      }
      popart::TensorInfo tensor_info(dtype, shape);
      popart::ConstVoidData const_data{tensor.data(), tensor_info};
      if (!node->outputs.empty()) {
        auto op_node = node->outputs[0];
        NameScopeHelper ns_helper(op_node->Op(), builder_.get());
        popart::TensorId result =
            builder_->addInitializedInputTensor(const_data, var_name);
        resources_->tensors.emplace(var_name, result);
        resources_->weights.push_back(var_name);
J
jianghaicheng 已提交
320 321 322
      }
    }
  }
A
Allen Guo 已提交
323 324 325
  VLOG(10) << "leave Compiler::LowerWeights";
}

A
Allen Guo 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339
void Compiler::LowerBody() {
  VLOG(10) << "enter Compiler::LowerBody";
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    VLOG(10) << "lowering op: " << op_type;

    if (op_type == "popart_constant") {
      // pass
    } else if (op_type == "popart_optimizer") {
      // pass
    } else if (op_type == "popart_checkpointoutput") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
A
Allen Guo 已提交
340
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
341
      auto output_ids = builder_->checkpointOutput(inputs);
A
Allen Guo 已提交
342
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
      InsertTensors(outputs, output_ids);
    } else if (op_type == "popart_custom_op") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto attributes = std::map<std::string, popart::any>{};
      for (auto& attr : op_desc->GetAttrMap()) {
        CustomOpAttrVisitor visitor(&attributes, attr.first);
        boost::apply_visitor(visitor, attr.second);
      }
      auto __op_type =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("__op_type"));
      VLOG(10) << "Build graph from custom op: " << __op_type;
      auto it = custom_ops_.find(__op_type);
A
Allen Guo 已提交
357
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
358 359 360
      auto output_ids =
          builder_->customOp(it->second.popart_op, it->second.popart_op.version,
                             inputs, outputs.size(), attributes, debug_context);
A
Allen Guo 已提交
361
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
362 363 364 365 366 367 368 369
      InsertTensors(outputs, output_ids);
    } else if (op_type == "popart_printtensor") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto print_gradient =
          BOOST_GET_CONST(int64_t, op_desc->GetAttr("print_gradient"));
      auto title = BOOST_GET_CONST(std::string, op_desc->GetAttr("title"));
A
Allen Guo 已提交
370
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
371 372
      auto output_ids = builder_->aiGraphcoreOpset1().printtensor(
          inputs, print_gradient, debug_context, title);
A
Allen Guo 已提交
373
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
374 375 376 377 378 379 380 381 382 383 384
      InsertTensors(outputs, output_ids);
    } else {
      auto itr = name_function_.find(op_type);
      if (itr != name_function_.end()) {
        itr->second(node->Op());
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "%s is not registered, please check for unsupported operators for "
            "running on IPU",
            op_type));
      }
A
Allen Guo 已提交
385
    }
A
Allen Guo 已提交
386 387 388
  }
  VLOG(10) << "leave Compiler::LowerBody";
}
A
Allen Guo 已提交
389

A
Allen Guo 已提交
390 391
void Compiler::LowerOptimizer(const Scope* scope) {
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_optimizer") {
      auto raw_type =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("raw_type"));
      resources_->optimizer_type = raw_type;
      auto loss_var =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("loss_var"));
      resources_->loss_var = resources_->tensors[loss_var];
      resources_->with_lr_sched =
          BOOST_GET_CONST(bool, op_desc->GetAttr("with_lr_sched"));
      if (op_desc->HasAttr("lr_var")) {
        auto lr_var = BOOST_GET_CONST(std::string, op_desc->GetAttr("lr_var"));
        resources_->lr_var = lr_var;
        resources_->lr = GetSingleVarFromScope<float>(scope, lr_var);
      } else {
        // adadelta has no lr
        resources_->lr = 0.01f;
        resources_->with_lr_sched = false;
      }
      VLOG(10) << "Set initial lr: " << resources_->lr;
A
Allen Guo 已提交
413 414

      // Get the type of optimizer
A
Allen Guo 已提交
415
      auto type = BOOST_GET_CONST(std::string, op_desc->GetAttr("type"));
A
Allen Guo 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
      // Set weight decay by tensor names for Lamb
      auto weight_decay_vars = BOOST_GET_CONST(
          std::vector<std::string>, op_desc->GetAttr("weight_decay_vars"));
      auto weight_decay_values = BOOST_GET_CONST(
          std::vector<float>, op_desc->GetAttr("weight_decay_values"));
      // Get the maximum permissible value for gradient clipping
      std::vector<popart::ClipNormSettings> clip_norm_settings = {};
      if (op_desc->HasAttr("clip_norm")) {
        auto clip_norm = BOOST_GET_CONST(float, op_desc->GetAttr("clip_norm"));
        clip_norm_settings.push_back(
            popart::ClipNormSettings::clipAllWeights(clip_norm));
        VLOG(10) << "Set the global gradient clipping with the maximum "
                    "permissible value: "
                 << clip_norm;
      }

      // Values from ipu_strategy
      auto loss_scaling = ipu_strategy_->loss_scaling;
      auto accl1_type = DataTypeFromStr(ipu_strategy_->accl1_type);
      auto accl2_type = DataTypeFromStr(ipu_strategy_->accl2_type);
      auto accl3_type = DataTypeFromStr(ipu_strategy_->accl3_type);

A
Allen Guo 已提交
438 439 440 441 442 443 444
      if (type == "sgd") {
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::SGD>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
445
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
446 447 448
              popart::OptimizerValue(momentum, true),
              popart::SGD::getUnsetDampening(),
              popart::SGD::getUnsetVelocityScaling(),
A
Allen Guo 已提交
449
              popart::OptimizerValue(loss_scaling, true), clip_norm_settings);
A
Allen Guo 已提交
450
        };
A
Allen Guo 已提交
451 452 453 454 455 456
        resources_->eval_optimizer = std::make_unique<popart::SGD>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, true), popart::SGD::getUnsetDampening(),
            popart::SGD::getUnsetVelocityScaling(),
            popart::OptimizerValue(loss_scaling, true), clip_norm_settings);
A
Allen Guo 已提交
457 458 459 460 461 462 463 464 465 466
      } else if (type == "adam") {
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto beta1 = BOOST_GET_CONST(float, op_desc->GetAttr("beta1"));
        auto beta2 = BOOST_GET_CONST(float, op_desc->GetAttr("beta2"));
        auto eps = BOOST_GET_CONST(float, op_desc->GetAttr("eps"));
        auto mwn = ipu_strategy_->max_weight_norm;
        VLOG(10) << "set max_weight_norm: " << mwn;
        auto adam_mode_ =
            BOOST_GET_CONST(std::string, op_desc->GetAttr("adam_mode"));
A
Allen Guo 已提交
467 468 469
        auto adam_mode =
            AdamModeFromStr(adam_mode_, ipu_strategy_->use_no_bias_optimizer);
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
A
Allen Guo 已提交
470
        auto scaled_optimizer_state_ = ipu_strategy_->scaled_optimizer_state;
A
Allen Guo 已提交
471 472 473 474
        if (weight_decay_mode_.empty()) {
          weight_decay_mode_ = BOOST_GET_CONST(
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
475 476
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
A
Allen Guo 已提交
477 478 479 480 481 482 483 484 485 486 487 488
          if (adam_mode == popart::AdamMode::Lamb ||
              adam_mode == popart::AdamMode::LambNoBias) {
            const std::map<std::string, std::pair<float, bool>>
                optimizer_value = {{"defaultLearningRate", {lr, false}},
                                   {"defaultBeta1", {beta1, false}},
                                   {"defaultBeta2", {beta2, false}},
                                   {"defaultEps", {eps, true}},
                                   {"lossScaling", {loss_scaling, true}},
                                   {"defaultMaxWeightNorm", {mwn, true}}};
            auto optimizer_instance = std::make_unique<popart::Adam>(
                optimizer_value, adam_mode, weight_decay_mode,
                popart::DataType::UNDEFINED, accl1_type, accl2_type,
A
Allen Guo 已提交
489
                clip_norm_settings, scaled_optimizer_state_);
A
Allen Guo 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
            for (int i = 0; i < weight_decay_vars.size(); i++) {
              optimizer_instance->insertSpecific(
                  weight_decay_vars[i],
                  {{"weightDecay", {weight_decay_values[i], false}}});
              VLOG(10) << "Set Tensor " << weight_decay_vars[i]
                       << " weight decay as " << weight_decay_values[i];
            }
            return optimizer_instance;
          } else {
            return std::make_unique<popart::Adam>(
                popart::OptimizerValue(lr, false),
                popart::OptimizerValue(weight_decay, false),
                popart::OptimizerValue(beta1, false),
                popart::OptimizerValue(beta2, false),
                popart::OptimizerValue(eps, true),
                popart::OptimizerValue(loss_scaling, true),
                popart::OptimizerValue(mwn, true), adam_mode, weight_decay_mode,
                popart::DataType::UNDEFINED, accl1_type, accl2_type,
A
Allen Guo 已提交
508
                clip_norm_settings, scaled_optimizer_state_);
A
Allen Guo 已提交
509 510
          }
        };
A
Allen Guo 已提交
511
        if (adam_mode == popart::AdamMode::Lamb) {
A
Allen Guo 已提交
512 513 514 515 516 517 518 519 520 521
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {beta1, false}},
               {"defaultBeta2", {beta2, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
          auto eval_optimizer = std::make_unique<popart::Adam>(
              optimizer_value, adam_mode, weight_decay_mode,
              popart::DataType::UNDEFINED, popart::DataType::FLOAT,
A
Allen Guo 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
              popart::DataType::FLOAT, clip_norm_settings,
              scaled_optimizer_state_);
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else if (adam_mode == popart::AdamMode::LambNoBias) {
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {1.0, false}},
               {"defaultBeta2", {1.0, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
          auto eval_optimizer = std::make_unique<popart::Adam>(
              optimizer_value, adam_mode, weight_decay_mode,
              popart::DataType::UNDEFINED, popart::DataType::FLOAT,
              popart::DataType::FLOAT, clip_norm_settings,
              scaled_optimizer_state_);
A
Allen Guo 已提交
542 543 544 545 546 547 548 549 550 551 552
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else {
          resources_->eval_optimizer = std::make_unique<popart::Adam>(
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(beta1, false),
              popart::OptimizerValue(beta2, false),
A
Allen Guo 已提交
553 554 555 556
              popart::OptimizerValue(eps, true),
              popart::OptimizerValue(loss_scaling, true),
              popart::OptimizerValue(mwn, true), adam_mode, weight_decay_mode,
              popart::DataType::UNDEFINED, popart::DataType::FLOAT,
A
Allen Guo 已提交
557 558
              popart::DataType::FLOAT, clip_norm_settings,
              scaled_optimizer_state_);
A
Allen Guo 已提交
559
        }
A
Allen Guo 已提交
560 561 562 563 564 565 566 567 568
      } else if (type == "adaptive") {
        auto alpha = BOOST_GET_CONST(float, op_desc->GetAttr("alpha"));
        auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
        auto eps = BOOST_GET_CONST(float, op_desc->GetAttr("eps"));
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto adaptive_mode_ =
            BOOST_GET_CONST(std::string, op_desc->GetAttr("adaptive_mode"));
        auto adaptive_mode = AdaptiveModeFromStr(adaptive_mode_);
A
Allen Guo 已提交
569 570 571 572 573
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
        if (weight_decay_mode_.empty()) {
          weight_decay_mode_ = BOOST_GET_CONST(
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
574 575 576 577
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::Adaptive>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
578
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
579 580 581 582
              popart::OptimizerValue(alpha, true),
              popart::OptimizerValue(momentum, true),
              popart::OptimizerValue(eps, true),
              popart::OptimizerValue(loss_scaling, true), adaptive_mode,
A
Allen Guo 已提交
583 584
              weight_decay_mode, popart::DataType::UNDEFINED, accl1_type,
              accl2_type, accl3_type);
A
Allen Guo 已提交
585
        };
A
Allen Guo 已提交
586 587 588 589 590 591 592 593 594 595
        resources_->eval_optimizer = std::make_unique<popart::Adaptive>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(alpha, true),
            popart::OptimizerValue(momentum, true),
            popart::OptimizerValue(eps, true),
            popart::OptimizerValue(loss_scaling, true), adaptive_mode,
            weight_decay_mode, popart::DataType::UNDEFINED,
            popart::DataType::FLOAT, popart::DataType::FLOAT,
            popart::DataType::UNDEFINED);
A
Allen Guo 已提交
596 597 598 599 600 601
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "optimizer %s is not implemented", type));
      }
    }
  }
J
jianghaicheng 已提交
602 603 604 605 606 607 608 609
}

void Compiler::InsertTensors(const std::vector<std::string>& output_names,
                             const std::vector<std::string>& tensor_ids) {
  PADDLE_ENFORCE_EQ(output_names.size(), tensor_ids.size(),
                    platform::errors::Fatal("InsertTensors size mismatch"));
  for (int i = 0; i < tensor_ids.size(); i++) {
    std::string tensor_id = tensor_ids[i];
A
Allen Guo 已提交
610
    resources_->tensors.emplace(output_names[i], tensor_ids[i]);
J
jianghaicheng 已提交
611 612 613 614 615 616 617
  }
}

void Compiler::InsertTensors(const std::vector<std::string>& output_names,
                             const std::string& tensor_id) {
  PADDLE_ENFORCE_EQ(output_names.size(), 1,
                    platform::errors::Fatal("InsertTensors size mismatch"));
A
Allen Guo 已提交
618
  resources_->tensors.emplace(output_names[0], tensor_id);
J
jianghaicheng 已提交
619 620
}

A
Allen Guo 已提交
621 622 623 624 625
void Compiler::PostLower(const std::vector<std::string>& tensor_ids,
                         const OpDesc* op_desc) {
  // Set pipline
  // Due to the limitation of popart, if an op has multiple outputs,
  // pipline settings needs to be set at the same time
J
jianghaicheng 已提交
626 627 628 629 630 631 632 633 634 635
  auto tensor_ids_set =
      std::set<std::string>(tensor_ids.begin(), tensor_ids.end());
  if (op_desc->HasAttr(sIpuIndexAttr)) {
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_ids_set, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_ids_set, ipu_stage);
A
Allen Guo 已提交
636
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
637 638 639
               << " for op: " << op_desc->Type();
    }
  }
A
Allen Guo 已提交
640 641 642 643

  for (auto& tensor_id : tensor_ids) {
    PostLower(tensor_id, op_desc, true);
  }
J
jianghaicheng 已提交
644 645
}

A
Allen Guo 已提交
646 647 648
void Compiler::PostLower(const std::string& tensor_id, const OpDesc* op_desc) {
  PostLower(tensor_id, op_desc, false);
}
J
jianghaicheng 已提交
649

A
Allen Guo 已提交
650 651 652 653
void Compiler::PostLower(const std::string& tensor_id, const OpDesc* op_desc,
                         bool skip_pipline) {
  // Set pipline
  if (!skip_pipline && op_desc->HasAttr(sIpuIndexAttr)) {
J
jianghaicheng 已提交
654 655 656 657 658 659 660
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_id, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_id, ipu_stage);
A
Allen Guo 已提交
661
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
662 663 664
               << " for op: " << op_desc->Type();
    }
  }
A
Allen Guo 已提交
665
  // Set amp
A
Allen Guo 已提交
666
  if (op_desc->Type() == "popart_matmul") {
A
Allen Guo 已提交
667 668 669 670
    if (set_amp_for_all_) {
      auto amp = ipu_strategy_->available_memory_proportion;
      if (amp < 0.0f || amp > 1.0) {
        PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
671 672
            "AvailableMemoryProportion %f is invalid, which should be in "
            "range [0.0, 1.0]",
A
Allen Guo 已提交
673 674 675 676 677 678 679 680 681 682
            amp));
      }
      if (amp > 0.0f) {
        builder_->setAvailableMemoryProportion(tensor_id, amp);
      }
    } else {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        auto amp = BOOST_GET_CONST(float, op_desc->GetAttr(sAvailMemAttribute));
        if (amp < 0.0f || amp > 1.0) {
          PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
683 684
              "AvailableMemoryProportion %f is invalid, which should be in "
              "range [0.0, 1.0]",
A
Allen Guo 已提交
685 686 687 688 689 690 691 692
              amp));
        }
        if (amp > 0.0f) {
          builder_->setAvailableMemoryProportion(tensor_id, amp);
          VLOG(10) << "set available_memory_proportion for tensor: "
                   << tensor_id << " as " << amp;
        }
      }
A
Allen Guo 已提交
693
    }
A
Allen Guo 已提交
694
    // Set serialize matmul
A
Allen Guo 已提交
695 696 697 698 699 700 701 702
    if (op_desc->HasAttr(sMatmulSerializeFactor)) {
      auto factor =
          BOOST_GET_CONST(int, op_desc->GetAttr(sMatmulSerializeFactor));
      std::string mode = "output_channels";
      if (op_desc->HasAttr(sMatmulSerializeMode)) {
        mode = BOOST_GET_CONST(std::string,
                               op_desc->GetAttr(sMatmulSerializeMode));
      }
A
Allen Guo 已提交
703
      builder_->setSerializeMatMul({tensor_id}, mode, factor, true);
A
Allen Guo 已提交
704 705 706
    }
  }
}
J
jianghaicheng 已提交
707

A
Allen Guo 已提交
708 709 710 711 712 713 714 715
void Compiler::SetCustomOps(
    const std::vector<IpuCustomOpIdentifier>& custom_ops) {
  for (auto x : custom_ops) {
    custom_ops_.emplace(x.paddle_op, x);
  }
}

std::string Compiler::GetFP16ModelProto() {
J
jianghaicheng 已提交
716 717
  popart::GraphTransformer graph_transformer(builder_->getModelProto());
  graph_transformer.convertFloatsToHalfs();
A
Allen Guo 已提交
718
  return graph_transformer.getModelProto();
J
jianghaicheng 已提交
719 720 721
}

std::string Compiler::GetModelProto() {
A
Allen Guo 已提交
722 723 724 725
  if (ipu_strategy_->enable_fp16) {
    return GetFP16ModelProto();
  } else {
    return builder_->getModelProto();
J
jianghaicheng 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739
  }
}

void Compiler::SaveModelProto(const std::string& path) {
  builder_->saveModelProto(path);
}

void Compiler::SaveModelProtoNoCheck(const std::string& path) {
  auto proto = GetModelProto();
  std::ofstream onnxfile(path, std::ios_base::binary);
  onnxfile.write(proto.data(), proto.size());
  onnxfile.close();
}

A
Allen Guo 已提交
740
std::vector<std::string> Compiler::GetOpInputs(const OpDesc* op) {
J
jianghaicheng 已提交
741 742 743
  auto ins = op->Input("__inputs__");
  std::vector<std::string> inputs;
  for (const auto& in : ins) {
A
Allen Guo 已提交
744 745
    if (resources_->tensors.find(in) != resources_->tensors.end()) {
      inputs.push_back(resources_->tensors[in]);
J
jianghaicheng 已提交
746 747 748 749 750 751 752
    } else {
      inputs.push_back(in);
    }
  }
  return inputs;
}

A
Allen Guo 已提交
753
const std::vector<std::string>& Compiler::GetOpOutputs(const OpDesc* op) {
J
jianghaicheng 已提交
754 755 756
  return op->Output("__outputs__");
}

A
Allen Guo 已提交
757
popart::DebugContext Compiler::BuildDebugContext(const OpDesc* op) {
J
jianghaicheng 已提交
758 759 760 761 762 763 764 765 766 767
  auto op_identify_id =
      BOOST_GET_CONST(std::string, op->GetAttr(sOpIdentifyIdAttr));
  VLOG(10) << "op_identify_id of op: " << op->Type() << " is "
           << op_identify_id;
  return popart::DebugContext(op_identify_id);
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle