io.py 79.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34 35
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
36
from paddle.fluid.compiler import CompiledProgram
37
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
38
from . import reader
39
from . import unique_name
S
sneaxiy 已提交
40
from .reader import *
41 42
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
43
from . import core
44
from .. import compat as cpt
45

46 47
batch = paddle.batch

48
__all__ = [
49 50 51 52 53 54 55 56 57 58 59 60 61
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
62 63
    'get_program_parameter',
    'get_program_persistable_vars',
64
] + reader.__all__ + paddle.reader.__all__
65

66 67
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
68

69 70

def is_parameter(var):
F
fengjiayi 已提交
71 72
    """
    Check whether the given variable is an instance of Parameter.
73 74

    Args:
F
fengjiayi 已提交
75
        var(Variable): The variable to be checked.
76 77

    Returns:
F
fengjiayi 已提交
78 79 80 81 82 83
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

84
            import paddle.fluid as fluid
F
fengjiayi 已提交
85 86
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
87
    """
88 89 90 91
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

105
            import paddle.fluid as fluid
106
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
107 108
            res = fluid.io.is_persistable(param)
    """
109
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
110 111
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
112
        return False
113 114 115
    return var.persistable


H
hong 已提交
116
def is_belong_to_optimizer(var):
117
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
118 119 120
        return is_persistable(var)

    return False
H
hong 已提交
121 122


H
hong 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


167 168
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
184 185


H
hong 已提交
186 187 188 189 190 191 192 193 194 195 196
@contextlib.contextmanager
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
197 198 199 200 201 202
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
203 204 205
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
206 207 208
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
209 210 211
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
212 213 214
    return main_program


215 216 217 218 219
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
220
              filename=None):
221
    """
222
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
223

224 225 226
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
227

228
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
229
    If you prefer to save variables in separate files in the `dirname` folder,
230
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
231
    use `filename` to specify it.
232

F
fengjiayi 已提交
233 234
    Args:
        executor(Executor): The executor to run for saving variables.
235 236
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
237
        main_program(Program, optional): The program whose variables will be saved.
238
                                    If it is None, the default main program will
F
fengjiayi 已提交
239 240
                                    be used automatically.
                                    Default: None
241 242 243 244 245 246 247 248
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
249 250

    Returns:
251 252
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
253 254 255 256 257 258 259

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

260
            import paddle.fluid as fluid
261

262 263 264 265 266 267 268 269 270 271 272
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
273

274
            # The first usage: use `vars` to set the saved variables.
275 276
            var_list = [w, b]
            path = "./my_paddle_vars"
277
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
278 279 280 281 282 283 284 285 286 287
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
288
    """
289 290 291 292
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
293
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
294

295
    if vars is None:
296
        return save_vars(
297
            executor,
298
            main_program=main_program,
299
            dirname=dirname,
300
            vars=list(filter(predicate, main_program.list_vars())),
301
            filename=filename)
302
    else:
303
        params_var_name = unique_name.generate("saved_params")
304 305 306 307 308 309 310
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

311 312
        save_program = Program()
        save_block = save_program.global_block()
313 314

        save_var_map = {}
315
        for each_var in vars:
316 317 318
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
319
            new_var = _clone_var_in_block_(save_block, each_var)
320 321 322
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
323 324 325 326
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
327
                    attrs={'file_path': os.path.normpath(save_file_path)})
328 329 330
            else:
                save_var_map[new_var.name] = new_var

331
        if filename is not None or save_to_memory:
332 333 334 335
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

336 337 338 339 340 341 342
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
343
            save_block.append_op(
344 345
                type='save_combine',
                inputs={'X': save_var_list},
346 347 348 349 350
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
351

352 353 354 355
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
356
        executor.run(save_program)
357 358
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
359 360


361
def save_params(executor, dirname, main_program=None, filename=None):
362
    """
G
guofei 已提交
363 364 365
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
366

G
guofei 已提交
367 368 369
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
370 371
    the file name.

G
guofei 已提交
372 373 374 375 376 377 378 379 380 381
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
382 383

    Args:
G
guofei 已提交
384 385
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
386 387
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
388 389 390 391 392 393 394 395 396 397
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
398 399

    Returns:
400 401
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
402 403 404 405

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
406
            import paddle.fluid as fluid
G
guofei 已提交
407 408 409 410 411 412 413 414 415 416
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
417
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
418 419 420 421
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
422
    """
423
    return save_vars(
424 425
        executor,
        dirname=dirname,
426
        main_program=main_program,
427
        vars=None,
428
        predicate=is_parameter,
429
        filename=filename)
430 431


432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

454
            import paddle.fluid as fluid
455 456 457 458 459 460 461 462 463 464
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
465
        receive params on pserver through rpc.
466 467 468 469 470 471 472 473 474 475
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
476 477 478 479 480 481 482
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
483 484 485

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
486
                slice = optimizer.slice
487 488 489
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
490 491 492
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
493 494
                endpoints[index] = endpoint

T
tangwei12 已提交
495 496 497 498 499
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

500
            block.append_op(
T
tangwei12 已提交
501 502 503 504 505 506 507 508 509 510 511
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
541 542
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
543 544 545 546 547 548
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
549
        raise TypeError("'main_program' should be an instance of Program.")
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


583
def save_persistables(executor, dirname, main_program=None, filename=None):
584
    """
G
guofei 已提交
585 586 587 588 589
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
590

G
guofei 已提交
591
    The :code:`dirname` is used to specify the folder where persistable variables
592
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
593 594
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
595 596 597

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
598 599
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
600 601 602
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
603 604 605 606 607 608 609 610
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
611 612

    Returns:
613 614
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
615 616 617 618

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
619
            import paddle.fluid as fluid
G
guofei 已提交
620 621 622 623 624 625 626 627 628 629
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
630
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
631 632 633 634 635
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
636
    """
637
    if main_program and main_program._is_distributed:
638
        return _save_distributed_persistables(
639 640
            executor, dirname=dirname, main_program=main_program)
    else:
641
        return save_vars(
642 643 644 645 646 647
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
648 649


650 651 652 653 654
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
655
              filename=None):
656
    """
657
    This API loads variables from files by executor.
F
fengjiayi 已提交
658

659 660 661 662
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
663

664
    The `dirname` is used to specify the folder where to load variables.
665
    If variables were saved in separate files in the folder `dirname`,
666
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
667
    use `filename` to specify it.
668

F
fengjiayi 已提交
669 670
    Args:
        executor(Executor): The executor to run for loading variables.
671 672
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
673
                                    If it is None, the default main program will
F
fengjiayi 已提交
674 675
                                    be used automatically.
                                    Default: None
676
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
677
                                   Default: None
678 679 680 681 682 683
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
684 685 686 687 688 689 690 691 692 693

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

694
            import paddle.fluid as fluid
695

696 697 698 699 700 701 702 703 704 705 706
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
707

708 709 710 711 712 713 714 715 716 717 718
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
719
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
720 721 722
            def name_has_fc(var):
                res = "fc" in var.name
                return res
723 724 725
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
726
                               vars=None, predicate=name_has_fc)
727 728
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
729

730
    """
731 732 733 734 735
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
736

737
    if vars is None:
738
        if main_program is None:
Y
Yu Yang 已提交
739
            main_program = default_main_program()
740
        if not isinstance(main_program, Program):
741 742 743
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
744 745 746

        load_vars(
            executor,
747
            dirname=dirname,
T
tangwei12 已提交
748
            main_program=main_program,
749
            vars=list(filter(predicate, main_program.list_vars())),
750
            filename=filename)
751 752 753
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
754

755 756
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
757

758
        if not isinstance(main_program, Program):
759 760 761
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
762

T
tangwei12 已提交
763
        # save origin param shape
H
hong 已提交
764
        orig_para_shape = {}
765
        load_var_map = {}
766 767
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
768 769
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
770 771

            if isinstance(each_var, Parameter):
772 773
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
774
            new_var = _clone_var_in_block_(load_block, each_var)
775
            if filename is None:
776 777 778 779
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
780 781 782 783
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
784
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
785 786 787
            else:
                load_var_map[new_var.name] = new_var

788
        if filename is not None:
789 790 791 792
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

793 794 795
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

796
            load_block.append_op(
797
                type='load_combine',
798
                inputs={},
799
                outputs={"Out": load_var_list},
800 801 802 803
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
804 805
        executor.run(load_prog)

T
tangwei12 已提交
806
        # check var shape
H
hong 已提交
807 808 809 810 811 812
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
813
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
814 815 816
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
817
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
818 819 820
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

821

822
def load_params(executor, dirname, main_program=None, filename=None):
823
    """
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
843 844

    Args:
845 846
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
847
        dirname(str): The directory path.
848 849 850 851 852 853 854 855
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
856 857 858 859 860 861 862

    Returns:
        None

    Examples:
        .. code-block:: python

863
            import paddle.fluid as fluid
864

F
fengjiayi 已提交
865 866 867
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
868
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
869
                                main_program=None)
870 871
    """
    load_vars(
872 873 874
        executor,
        dirname=dirname,
        main_program=main_program,
875
        predicate=is_parameter,
876
        filename=filename)
877 878


879
def load_persistables(executor, dirname, main_program=None, filename=None):
880
    """
881 882
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
883
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
884

885 886 887 888
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
889 890

    Args:
891 892
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
893
        dirname(str): The directory path.
T
tianshuo78520a 已提交
894
        main_program(Program, optional): The program whose persistable variables will
895 896 897 898 899 900 901
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
902 903 904 905 906 907 908

    Returns:
        None

    Examples:
        .. code-block:: python

909
            import paddle.fluid as fluid
910

F
fengjiayi 已提交
911 912 913
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
914
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
915
                                       main_program=None)
916
    """
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

948
            import paddle.fluid as fluid
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
982 983 984 985 986 987 988 989
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1012
        raise TypeError("'main_program' should be an instance of Program.")
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1027 1028


1029 1030 1031
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1032 1033 1034
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1035 1036
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1037 1038 1039
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1040

1041
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1042
        out = global_block.var(name)
W
Wu Yi 已提交
1043
        global_block._prepend_op(
K
Kexin Zhao 已提交
1044 1045
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1046
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1047 1048 1049
            attrs={'col': i})


1050 1051 1052
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1053 1054
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1055 1056 1057
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1058

1059
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1060 1061 1062 1063 1064 1065 1066
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1067 1068 1069 1070
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1071
                         main_program=None,
1072
                         model_filename=None,
1073
                         params_filename=None,
T
tangwei12 已提交
1074 1075
                         export_for_deployment=True,
                         program_only=False):
1076
    """
F
fengjiayi 已提交
1077
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1078
    and then save it and all related parameters to given `dirname` .
1079
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1080 1081
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1082

G
guofei 已提交
1083 1084 1085 1086 1087
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1088 1089 1090

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1091
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1092 1093 1094 1095 1096 1097
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1098
                                         build the inference model. If is set None,
G
guofei 已提交
1099 1100 1101
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1102
                                       itself. If is set None, a default filename
G
guofei 已提交
1103 1104
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1105
                                        If it is set None, parameters will be saved
G
guofei 已提交
1106
                                        in separate files .
X
Xin Pan 已提交
1107 1108 1109 1110 1111
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1112 1113 1114 1115
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1116

F
fengjiayi 已提交
1117
    Returns:
G
guofei 已提交
1118 1119 1120 1121
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1122 1123

    Raises:
G
guofei 已提交
1124 1125
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1126 1127 1128

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1129

1130 1131
            import paddle.fluid as fluid

F
fengjiayi 已提交
1132 1133
            path = "./infer_model"

T
tianshuo78520a 已提交
1134
            # User defined network, here a softmax regession example
G
guofei 已提交
1135 1136
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1154 1155 1156
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1157
            # and parameters are going to be saved in separate files under folder
1158
            # "./infer_model".
1159 1160

    """
M
minqiyang 已提交
1161
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1162
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1163
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1164
        if len(feeded_var_names) > 0:
1165
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1166
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1167
                    isinstance(name, six.string_types)
1168
                    for name in feeded_var_names)):
M
minqiyang 已提交
1169
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1170 1171

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1172
        target_vars = [target_vars]
X
Xin Pan 已提交
1173
    elif export_for_deployment:
1174 1175
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1176 1177
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1178
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1179

1180 1181 1182
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
1183 1184 1185
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1186 1187 1188 1189 1190 1191
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1192 1193 1194 1195 1196
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1197
        for i, var in enumerate(target_vars):
1198
            if isinstance(var, Variable):
F
flame 已提交
1199 1200 1201
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1202
        target_vars = uniq_target_vars
F
flame 已提交
1203
    target_var_name_list = [var.name for var in target_vars]
1204

1205
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1206
    save_dirname = dirname
1207
    try:
L
lujun 已提交
1208 1209
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1210 1211 1212 1213
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1214 1215 1216 1217
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1218
    model_basename = os.path.join(save_dirname, model_basename)
1219

X
Xin Pan 已提交
1220 1221 1222 1223
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1224 1225 1226

    origin_program = main_program.clone()

X
Xin Pan 已提交
1227
    if export_for_deployment:
X
Xin Pan 已提交
1228 1229
        main_program = main_program.clone()
        global_block = main_program.global_block()
1230
        need_to_remove_op_index = []
X
Xin Pan 已提交
1231 1232 1233
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1234 1235 1236 1237 1238
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1239
        main_program.desc.flush()
X
Xin Pan 已提交
1240

1241 1242
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1243
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1244 1245
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1246 1247 1248
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1249 1250
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1251 1252
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1253 1254 1255
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1256 1257
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1258

T
tangwei12 已提交
1259 1260 1261 1262 1263 1264
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1265 1266
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1267 1268
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1269

L
lujun 已提交
1270
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1271
    return target_var_name_list
X
fix  
Xin Pan 已提交
1272

1273

1274 1275 1276
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1277 1278
                         params_filename=None,
                         pserver_endpoints=None):
1279
    """
1280 1281 1282
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1283
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1284

F
fengjiayi 已提交
1285
    Args:
1286 1287 1288
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1289
        executor(Executor): The executor to run for loading inference model.
1290
                            See :ref:`api_guide_executor_en` for more details about it.
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1302 1303 1304 1305

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1306
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1307 1308

    Returns:
1309
        list: The return of this API is a list with three elements:
1310
        (program, feed_target_names, fetch_targets). The `program` is a
1311 1312 1313 1314 1315
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1316 1317 1318 1319 1320 1321 1322

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1323 1324
            import paddle.fluid as fluid
            import numpy as np
1325 1326

            # Build the model
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1338 1339

            # Save the inference model
F
fengjiayi 已提交
1340
            path = "./infer_model"
1341 1342
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1343 1344 1345

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1346 1347
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1348
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1349 1350 1351 1352
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1353 1354 1355
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1356
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1357
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1358 1359
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1360
                                              pserver_endpoints=endpoints))
1361

1362
            # In this example, the inference program was saved in the file
1363
            # "./infer_model/__model__" and parameters were saved in
1364 1365 1366 1367
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1368
    """
1369 1370 1371 1372 1373
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
            raise ValueError("There is no directory named '%s'", dirname)
1374

1375 1376
        if model_filename is None:
            model_filename = '__model__'
1377

1378 1379
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1395

1396
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1397
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1398 1399 1400
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1401
    load_persistables(executor, load_dirname, program, params_filename)
1402

T
tangwei12 已提交
1403
    if pserver_endpoints:
T
tangwei12 已提交
1404
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1405

1406 1407
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1408 1409 1410 1411 1412
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1413 1414


T
tangwei12 已提交
1415 1416 1417
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1418 1419
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1420
    program._sync_with_cpp()
T
tangwei12 已提交
1421
    return program
T
tangwei12 已提交
1422 1423


X
xuwei06 已提交
1424 1425
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1437

F
fengjiayi 已提交
1438 1439
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1440

1441
            import paddle.fluid as fluid
F
fengjiayi 已提交
1442 1443 1444
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1445

X
xuwei06 已提交
1446
    """
1447
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1448

X
xuwei06 已提交
1449 1450 1451 1452 1453 1454 1455 1456
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1457
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1458

F
fengjiayi 已提交
1459 1460 1461 1462 1463 1464 1465
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1466

F
fengjiayi 已提交
1467 1468
    Returns:
        numpy.array: The parameter's values.
1469

F
fengjiayi 已提交
1470 1471 1472
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1473
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1474
                        given program but it is not a Parameter.
1475

F
fengjiayi 已提交
1476 1477 1478
    Examples:
        .. code-block:: python

1479
            import paddle.fluid as fluid
F
fengjiayi 已提交
1480 1481
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1482 1483
    """
    if program is None:
Y
Yu Yang 已提交
1484
        program = default_main_program()
X
xuwei06 已提交
1485 1486
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1593
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1594

1595 1596 1597 1598
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1599 1600 1601 1602
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1603
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1604 1605
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1606
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1607 1608 1609 1610

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1611 1612
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1613
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1624
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1625
    """
H
hong 已提交
1626
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1627
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1628

H
hong 已提交
1629 1630 1631 1632
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1633
    Args: 
1634 1635 1636 1637
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1638 1639 1640
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1657 1658
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1704
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1720
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1752 1753

    parameter_list = list(filter(is_parameter, program.list_vars()))
1754 1755 1756 1757 1758

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1759
    with open(parameter_file_name, 'rb') as f:
1760
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1761
            f, encoding='latin1')
Y
Yang Zhang 已提交
1762 1763 1764 1765 1766
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1767 1768 1769 1770 1771

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1772
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1773
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1774
            "Optimizer file [{}] not exits".format(opt_file_name)
1775 1776 1777 1778

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1779 1780

        with open(opt_file_name, 'rb') as f:
1781
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1782
                f, encoding='latin1')
Y
Yang Zhang 已提交
1783 1784 1785 1786 1787
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1788 1789


H
hong 已提交
1790
def load_program_state(model_path, var_list=None):
1791 1792 1793 1794 1795
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1796 1797 1798 1799 1800
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1902
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1903
        "Parameter file [{}] not exits".format(parameter_file_name)
1904 1905

    with open(parameter_file_name, 'rb') as f:
1906
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
1907
            f, encoding='latin1')
1908

H
hong 已提交
1909
    opt_file_name = model_prefix + ".pdopt"
1910 1911
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
1912
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
1913
                f, encoding='latin1')
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1950 1951
            fluid.set_program_state( prog, program_state)

1952 1953 1954 1955 1956 1957 1958
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1959
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1960 1961 1962 1963
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1964
            assert orig_para_np.shape == new_para_np.shape, \
1965
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
1966
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1967
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1968
            assert orig_para_np.dtype == new_para_np.dtype, \
1969
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
1970
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1971 1972 1973 1974 1975 1976
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1977
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))