io.py 76.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34 35
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
36
from paddle.fluid.compiler import CompiledProgram
37
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
38 39
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
40
from . import core
41
from .. import compat as cpt
42

43 44
batch = paddle.batch

45
__all__ = [
46 47 48 49 50 51 52 53 54 55 56 57 58
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
59 60
    'get_program_parameter',
    'get_program_persistable_vars',
61
] + reader.__all__ + paddle.reader.__all__
62

63 64
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
65

66 67

def is_parameter(var):
F
fengjiayi 已提交
68 69
    """
    Check whether the given variable is an instance of Parameter.
70 71

    Args:
F
fengjiayi 已提交
72
        var(Variable): The variable to be checked.
73 74

    Returns:
F
fengjiayi 已提交
75 76 77 78 79 80
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

81
            import paddle.fluid as fluid
F
fengjiayi 已提交
82 83
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
84
    """
85 86 87 88
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

102
            import paddle.fluid as fluid
103
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
104 105
            res = fluid.io.is_persistable(param)
    """
106
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
107 108
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
109
        return False
110 111 112
    return var.persistable


H
hong 已提交
113
def is_belong_to_optimizer(var):
114
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
115 116 117
        return is_persistable(var)

    return False
H
hong 已提交
118 119


H
hong 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


164 165
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
181 182


H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193
@contextlib.contextmanager
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
194 195 196 197 198 199
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
200 201 202
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
203 204 205
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
206 207 208
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
209 210 211
    return main_program


212 213 214 215 216
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
217
              filename=None):
218
    """
219
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
220

221 222 223
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
224

225
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
226
    If you prefer to save variables in separate files in the `dirname` folder,
227
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
228
    use `filename` to specify it.
229

F
fengjiayi 已提交
230 231
    Args:
        executor(Executor): The executor to run for saving variables.
232 233
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
234
                                    If it is None, the default main program will
F
fengjiayi 已提交
235 236
                                    be used automatically.
                                    Default: None
237 238 239 240 241 242 243 244
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
245 246 247 248 249 250 251 252 253 254

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

255
            import paddle.fluid as fluid
256

257 258 259 260 261 262 263 264 265 266 267
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
268

269
            # The first usage: use `vars` to set the saved variables.
270 271
            var_list = [w, b]
            path = "./my_paddle_vars"
272
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
273 274 275 276 277 278 279 280 281 282
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
283
    """
L
lujun 已提交
284
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
285
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
286

287 288 289
    if vars is None:
        save_vars(
            executor,
290
            main_program=main_program,
L
lujun 已提交
291
            dirname=save_dirname,
292
            vars=list(filter(predicate, main_program.list_vars())),
293
            filename=filename)
294
    else:
295 296 297 298 299 300 301
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

302 303
        save_program = Program()
        save_block = save_program.global_block()
304 305

        save_var_map = {}
306
        for each_var in vars:
307 308 309
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
310
            new_var = _clone_var_in_block_(save_block, each_var)
311
            if filename is None:
312 313
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
314 315 316 317
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
318
                    attrs={'file_path': save_file_path})
319 320 321
            else:
                save_var_map[new_var.name] = new_var

322
        if filename is not None:
323 324 325 326
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

327
            save_block.append_op(
328 329
                type='save_combine',
                inputs={'X': save_var_list},
330
                outputs={},
L
lujun 已提交
331
                attrs={'file_path': os.path.join(save_dirname, filename)})
332

333 334 335 336
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
337 338 339
        executor.run(save_program)


340
def save_params(executor, dirname, main_program=None, filename=None):
341
    """
G
guofei 已提交
342 343 344
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
345

G
guofei 已提交
346 347 348
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
349 350
    the file name.

G
guofei 已提交
351 352 353 354 355 356 357 358 359 360
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
361 362

    Args:
G
guofei 已提交
363 364
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
365
        dirname(str): The saving directory path.
G
guofei 已提交
366 367 368 369 370 371 372 373 374 375
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
376 377 378 379 380 381 382

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
383
            import paddle.fluid as fluid
G
guofei 已提交
384 385 386 387 388 389 390 391 392 393
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
394
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
395 396 397 398
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
399 400 401 402
    """
    save_vars(
        executor,
        dirname=dirname,
403
        main_program=main_program,
404
        vars=None,
405
        predicate=is_parameter,
406
        filename=filename)
407 408


409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

431
            import paddle.fluid as fluid
432 433 434 435 436 437 438 439 440 441
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
442
        receive params on pserver through rpc.
443 444 445 446 447 448 449 450 451 452
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
453 454 455 456 457 458 459
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
460 461 462

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
463
                slice = optimizer.slice
464 465 466
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
467 468 469
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
470 471
                endpoints[index] = endpoint

T
tangwei12 已提交
472 473 474 475 476
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

477
            block.append_op(
T
tangwei12 已提交
478 479 480 481 482 483 484 485 486 487 488
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
518 519
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
520 521 522 523 524 525
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
526
        raise TypeError("'main_program' should be an instance of Program.")
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


560
def save_persistables(executor, dirname, main_program=None, filename=None):
561
    """
G
guofei 已提交
562 563 564 565 566
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
567

G
guofei 已提交
568
    The :code:`dirname` is used to specify the folder where persistable variables
569
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
570 571
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
572 573 574

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
575 576 577
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
T
tianshuo78520a 已提交
578
        main_program(Program, optional): The program whose persistable variables will
G
guofei 已提交
579 580 581 582 583 584 585 586
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
587 588 589 590 591 592 593

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
594
            import paddle.fluid as fluid
G
guofei 已提交
595 596 597 598 599 600 601 602 603 604
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
605
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
606 607 608 609 610
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
611
    """
612 613 614 615 616 617 618 619 620 621 622
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
623 624


625 626 627 628 629
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
630
              filename=None):
631
    """
632
    This API loads variables from files by executor.
F
fengjiayi 已提交
633

634 635 636 637
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
638

639
    The `dirname` is used to specify the folder where to load variables.
640
    If variables were saved in separate files in the folder `dirname`,
641
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
642
    use `filename` to specify it.
643

F
fengjiayi 已提交
644 645
    Args:
        executor(Executor): The executor to run for loading variables.
646 647
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
648
                                    If it is None, the default main program will
F
fengjiayi 已提交
649 650
                                    be used automatically.
                                    Default: None
651
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
652
                                   Default: None
653 654 655 656 657 658
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
659 660 661 662 663 664 665 666 667 668

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

669
            import paddle.fluid as fluid
670

671 672 673 674 675 676 677 678 679 680 681
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
682

683 684 685 686 687 688 689 690 691 692 693
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
694
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
695 696 697
            def name_has_fc(var):
                res = "fc" in var.name
                return res
698 699 700
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
701
                               vars=None, predicate=name_has_fc)
702 703
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
704

705
    """
L
lujun 已提交
706
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
707

708
    if vars is None:
709
        if main_program is None:
Y
Yu Yang 已提交
710
            main_program = default_main_program()
711
        if not isinstance(main_program, Program):
712 713 714
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
715 716 717

        load_vars(
            executor,
L
lujun 已提交
718
            dirname=load_dirname,
T
tangwei12 已提交
719
            main_program=main_program,
720
            vars=list(filter(predicate, main_program.list_vars())),
721
            filename=filename)
722 723 724
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
725

726 727
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
728

729
        if not isinstance(main_program, Program):
730 731 732
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
733

T
tangwei12 已提交
734
        # save origin param shape
H
hong 已提交
735
        orig_para_shape = {}
736
        load_var_map = {}
737 738
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
739 740
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
741 742

            if isinstance(each_var, Parameter):
743 744
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
745
            new_var = _clone_var_in_block_(load_block, each_var)
746
            if filename is None:
747 748 749 750
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
751 752 753
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
754 755 756
            else:
                load_var_map[new_var.name] = new_var

757
        if filename is not None:
758 759 760 761
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

762
            load_block.append_op(
763
                type='load_combine',
764
                inputs={},
765
                outputs={"Out": load_var_list},
L
lujun 已提交
766
                attrs={'file_path': os.path.join(load_dirname, filename)})
767 768
        executor.run(load_prog)

T
tangwei12 已提交
769
        # check var shape
H
hong 已提交
770 771 772 773 774 775
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
776
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
777 778 779
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
780
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
781 782 783
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

784

785
def load_params(executor, dirname, main_program=None, filename=None):
786
    """
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
806 807

    Args:
808 809
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
810
        dirname(str): The directory path.
811 812 813 814 815 816 817 818
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
819 820 821 822 823 824 825

    Returns:
        None

    Examples:
        .. code-block:: python

826
            import paddle.fluid as fluid
827

F
fengjiayi 已提交
828 829 830
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
831
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
832
                                main_program=None)
833 834
    """
    load_vars(
835 836 837
        executor,
        dirname=dirname,
        main_program=main_program,
838
        predicate=is_parameter,
839
        filename=filename)
840 841


842
def load_persistables(executor, dirname, main_program=None, filename=None):
843
    """
844 845
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
846
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
847

848 849 850 851
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
852 853

    Args:
854 855
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
856
        dirname(str): The directory path.
T
tianshuo78520a 已提交
857
        main_program(Program, optional): The program whose persistable variables will
858 859 860 861 862 863 864
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
865 866 867 868 869 870 871

    Returns:
        None

    Examples:
        .. code-block:: python

872
            import paddle.fluid as fluid
873

F
fengjiayi 已提交
874 875 876
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
877
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
878
                                       main_program=None)
879
    """
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

911
            import paddle.fluid as fluid
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
945 946 947 948 949 950 951 952
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
975
        raise TypeError("'main_program' should be an instance of Program.")
976 977 978 979 980 981 982 983 984 985 986 987 988 989

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
990 991


992 993 994
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
995 996 997
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
998 999
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1000 1001 1002
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1003

1004
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1005
        out = global_block.var(name)
W
Wu Yi 已提交
1006
        global_block._prepend_op(
K
Kexin Zhao 已提交
1007 1008
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1009
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1010 1011 1012
            attrs={'col': i})


1013 1014 1015
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1016 1017
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1018 1019 1020
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1021

1022
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1023 1024 1025 1026 1027 1028 1029
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1030 1031 1032 1033
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1034
                         main_program=None,
1035
                         model_filename=None,
1036
                         params_filename=None,
T
tangwei12 已提交
1037 1038
                         export_for_deployment=True,
                         program_only=False):
1039
    """
F
fengjiayi 已提交
1040
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1041
    and then save it and all related parameters to given `dirname` .
1042
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1043 1044
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1045

G
guofei 已提交
1046 1047 1048 1049 1050
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1051 1052 1053

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1054
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1055 1056 1057 1058 1059 1060
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1061
                                         build the inference model. If is set None,
G
guofei 已提交
1062 1063 1064
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1065
                                       itself. If is set None, a default filename
G
guofei 已提交
1066 1067
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1068
                                        If it is set None, parameters will be saved
G
guofei 已提交
1069
                                        in separate files .
X
Xin Pan 已提交
1070 1071 1072 1073 1074
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1075 1076 1077 1078
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1079

F
fengjiayi 已提交
1080
    Returns:
G
guofei 已提交
1081 1082 1083 1084
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1085 1086

    Raises:
G
guofei 已提交
1087 1088
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1089 1090 1091

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1092

1093 1094
            import paddle.fluid as fluid

F
fengjiayi 已提交
1095 1096
            path = "./infer_model"

T
tianshuo78520a 已提交
1097
            # User defined network, here a softmax regession example
G
guofei 已提交
1098 1099
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1117 1118 1119
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1120
            # and parameters are going to be saved in separate files under folder
1121
            # "./infer_model".
1122 1123

    """
M
minqiyang 已提交
1124
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1125
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1126
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1127
        if len(feeded_var_names) > 0:
1128
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1129
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1130
                    isinstance(name, six.string_types)
1131
                    for name in feeded_var_names)):
M
minqiyang 已提交
1132
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1133 1134

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1135
        target_vars = [target_vars]
X
Xin Pan 已提交
1136
    elif export_for_deployment:
1137 1138
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1139 1140
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1141
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1142

1143 1144 1145
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
1146 1147 1148
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1149 1150 1151 1152 1153 1154
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1155 1156 1157 1158 1159
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1160
        for i, var in enumerate(target_vars):
1161
            if isinstance(var, Variable):
F
flame 已提交
1162 1163 1164
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1165
        target_vars = uniq_target_vars
F
flame 已提交
1166
    target_var_name_list = [var.name for var in target_vars]
1167

1168
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1169
    save_dirname = dirname
1170
    try:
L
lujun 已提交
1171 1172
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1173 1174 1175 1176
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1177 1178 1179 1180
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1181
    model_basename = os.path.join(save_dirname, model_basename)
1182

X
Xin Pan 已提交
1183 1184 1185 1186
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1187 1188 1189

    origin_program = main_program.clone()

X
Xin Pan 已提交
1190
    if export_for_deployment:
X
Xin Pan 已提交
1191 1192
        main_program = main_program.clone()
        global_block = main_program.global_block()
1193
        need_to_remove_op_index = []
X
Xin Pan 已提交
1194 1195 1196
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1197 1198 1199 1200 1201
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1202
        main_program.desc.flush()
X
Xin Pan 已提交
1203

1204 1205
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1206
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1207 1208
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1209 1210 1211
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1212 1213
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1214 1215
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1216 1217 1218
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1219 1220
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1221

T
tangwei12 已提交
1222 1223 1224 1225 1226 1227
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1228 1229
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1230 1231
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1232

L
lujun 已提交
1233
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1234
    return target_var_name_list
X
fix  
Xin Pan 已提交
1235

1236

1237 1238 1239
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1240 1241
                         params_filename=None,
                         pserver_endpoints=None):
1242
    """
1243 1244 1245
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1246
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1247

F
fengjiayi 已提交
1248
    Args:
1249
        dirname(str): The given directory path.
F
fengjiayi 已提交
1250
        executor(Executor): The executor to run for loading inference model.
1251 1252
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1253
                                  If it is None, the default filename
1254 1255 1256
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1257 1258 1259
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1260 1261 1262 1263 1264 1265
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1266
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1267 1268

    Returns:
1269
        list: The return of this API is a list with three elements:
1270
        (program, feed_target_names, fetch_targets). The `program` is a
1271 1272 1273 1274 1275
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1276 1277 1278 1279 1280 1281 1282

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1283 1284
            import paddle.fluid as fluid
            import numpy as np
1285 1286

            # Build the model
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1298 1299

            # Save the inference model
F
fengjiayi 已提交
1300
            path = "./infer_model"
1301 1302
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1303 1304 1305

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1306 1307
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1308
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1309 1310 1311 1312
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1313 1314 1315
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1316
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1317
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1318 1319
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1320
                                              pserver_endpoints=endpoints))
1321

1322
            # In this example, the inference program was saved in the file
1323
            # "./infer_model/__model__" and parameters were saved in
1324 1325 1326 1327
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1328
    """
L
lujun 已提交
1329 1330
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1331 1332
        raise ValueError("There is no directory named '%s'", dirname)

1333 1334
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1335
    else:
1336
        model_filename = "__model__"
L
lujun 已提交
1337
    model_filename = os.path.join(load_dirname, model_filename)
1338 1339 1340

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1341

1342
    with open(model_filename, "rb") as f:
1343 1344
        program_desc_str = f.read()

1345
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1346
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1347 1348 1349
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1350
    load_persistables(executor, load_dirname, program, params_filename)
1351

T
tangwei12 已提交
1352
    if pserver_endpoints:
T
tangwei12 已提交
1353
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1354

1355 1356
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1357 1358 1359 1360 1361
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1362 1363


T
tangwei12 已提交
1364 1365 1366
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1367 1368
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1369
    program._sync_with_cpp()
T
tangwei12 已提交
1370
    return program
T
tangwei12 已提交
1371 1372


X
xuwei06 已提交
1373 1374
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1386

F
fengjiayi 已提交
1387 1388
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1389

1390
            import paddle.fluid as fluid
F
fengjiayi 已提交
1391 1392 1393
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1394

X
xuwei06 已提交
1395
    """
1396
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1397

X
xuwei06 已提交
1398 1399 1400 1401 1402 1403 1404 1405
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1406
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1407

F
fengjiayi 已提交
1408 1409 1410 1411 1412 1413 1414
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1415

F
fengjiayi 已提交
1416 1417
    Returns:
        numpy.array: The parameter's values.
1418

F
fengjiayi 已提交
1419 1420 1421
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1422
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1423
                        given program but it is not a Parameter.
1424

F
fengjiayi 已提交
1425 1426 1427
    Examples:
        .. code-block:: python

1428
            import paddle.fluid as fluid
F
fengjiayi 已提交
1429 1430
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1431 1432
    """
    if program is None:
Y
Yu Yang 已提交
1433
        program = default_main_program()
X
xuwei06 已提交
1434 1435
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1542
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1543

1544 1545 1546 1547
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1548 1549 1550 1551
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1552
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1553 1554
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1555
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1556 1557 1558 1559

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1560 1561
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1562
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1573
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1574
    """
H
hong 已提交
1575
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1576
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1577

H
hong 已提交
1578 1579 1580 1581
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1582
    Args: 
1583 1584 1585 1586
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1587 1588 1589
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1606 1607
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1653
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1669
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1701 1702

    parameter_list = list(filter(is_parameter, program.list_vars()))
1703 1704 1705 1706 1707

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1708
    with open(parameter_file_name, 'rb') as f:
1709
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1710
            f, encoding='latin1')
Y
Yang Zhang 已提交
1711 1712 1713 1714 1715
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1716 1717 1718 1719 1720

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1721
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1722
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1723
            "Optimizer file [{}] not exits".format(opt_file_name)
1724 1725 1726 1727

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1728 1729

        with open(opt_file_name, 'rb') as f:
1730
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1731
                f, encoding='latin1')
Y
Yang Zhang 已提交
1732 1733 1734 1735 1736
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1737 1738


H
hong 已提交
1739
def load_program_state(model_path, var_list=None):
1740 1741 1742 1743 1744
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1745 1746 1747 1748 1749
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1851
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1852
        "Parameter file [{}] not exits".format(parameter_file_name)
1853 1854

    with open(parameter_file_name, 'rb') as f:
1855
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
1856
            f, encoding='latin1')
1857

H
hong 已提交
1858
    opt_file_name = model_prefix + ".pdopt"
1859 1860
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
1861
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
1862
                f, encoding='latin1')
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1899 1900
            fluid.set_program_state( prog, program_state)

1901 1902 1903 1904 1905 1906 1907
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1908
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1909 1910 1911 1912
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1913
            assert orig_para_np.shape == new_para_np.shape, \
1914
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
1915
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1916
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1917
            assert orig_para_np.dtype == new_para_np.dtype, \
1918
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
1919
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1920 1921 1922 1923 1924 1925
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1926
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))