backward.h 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <tuple>
18

19
#include "paddle/phi/core/meta_tensor.h"
H
hong 已提交
20 21 22
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/ternary.h"
H
hong 已提交
23
#include "paddle/phi/infermeta/unary.h"
24

25
namespace phi {
26

27 28 29 30
// Common InferMeta Functions for backward operators.
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

31 32 33 34 35 36 37 38 39
void BilinearTensorProductGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& y,
                                        const MetaTensor& weight,
                                        const MetaTensor& dout,
                                        MetaTensor* dx,
                                        MetaTensor* dy,
                                        MetaTensor* dweight,
                                        MetaTensor* dbias);

40 41 42 43 44
void ChannelShuffleGradInferMeta(const MetaTensor& out_grad,
                                 int groups,
                                 const std::string& data_format,
                                 MetaTensor* x_grad);

F
From00 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
void ConvTransposeGradInferMeta(const MetaTensor& x,
                                const MetaTensor& filter,
                                const MetaTensor& dout,
                                const std::vector<int>& strides,
                                const std::vector<int>& paddings,
                                const std::vector<int>& output_padding,
                                const std::vector<int>& output_size,
                                const std::string& padding_algorithm,
                                int groups,
                                const std::vector<int>& dilations,
                                const std::string& data_format,
                                MetaTensor* dx,
                                MetaTensor* dfilter);

void Conv2dTransposeDoubleGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& filter,
                                        const MetaTensor& dout,
                                        const MetaTensor& ddx,
                                        const MetaTensor& ddfilter,
                                        const std::vector<int>& strides,
                                        const std::vector<int>& paddings,
                                        const std::vector<int>& output_padding,
                                        const std::vector<int>& output_size,
                                        const std::string& padding_algorithm,
                                        int groups,
                                        const std::vector<int>& dilations,
                                        const std::string& data_format,
                                        MetaTensor* dx,
                                        MetaTensor* dfilter,
                                        MetaTensor* ddout);

76 77 78 79 80 81 82 83 84 85 86
void CrossEntropyWithSoftmaxGradInferMeta(const MetaTensor& label,
                                          const MetaTensor& softmax,
                                          const MetaTensor& loss_grad,
                                          bool soft_label,
                                          bool use_softmax,
                                          bool numeric_stable_mode,
                                          int ignore_index,
                                          int axis,
                                          MetaTensor* logits_grad,
                                          MetaConfig config = MetaConfig());

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
void DeformableConvGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& offset,
                                 const MetaTensor& filter,
                                 paddle::optional<const MetaTensor&> mask,
                                 const MetaTensor& out_grad,
                                 const std::vector<int>& strides,
                                 const std::vector<int>& paddings,
                                 const std::vector<int>& dilations,
                                 int deformable_groups,
                                 int groups,
                                 int im2col_step,
                                 MetaTensor* dx,
                                 MetaTensor* offset_grad,
                                 MetaTensor* filter_grad,
                                 MetaTensor* mask_grad);

103 104 105 106
void GatherNdGradInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& out_grad,
                           MetaTensor* x_grad);
107

108 109
void GeneralUnaryGradInferMeta(const MetaTensor& x, MetaTensor* dx);

110 111 112 113
void GeneralBinaryGradInferMeta(const MetaTensor& x,
                                const MetaTensor& y,
                                MetaTensor* dx,
                                MetaTensor* dy);
114

115 116 117 118 119 120 121
void GeneralTernaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz);

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
void GeneralQuaternaryGradInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& z,
                                    const MetaTensor& k,
                                    MetaTensor* dx,
                                    MetaTensor* dy,
                                    MetaTensor* dz,
                                    MetaTensor* dk);

void GeneralQuinaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 const MetaTensor& k,
                                 const MetaTensor& l,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz,
                                 MetaTensor* dk,
                                 MetaTensor* dl);

F
From00 已提交
142 143 144 145
void GumbelSoftmaxGradInferMeta(const MetaTensor& out,
                                const MetaTensor& dout,
                                int axis,
                                MetaTensor* dx);
146

147 148
void KernelWithXShapeInferMeta(const MetaTensor& xshape, MetaTensor* dx);

F
From00 已提交
149 150 151 152 153 154 155 156 157 158
void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
                                   const MetaTensor& mask,
                                   const MetaTensor& dout,
                                   const std::vector<int>& kernel_size,
                                   const std::vector<int>& strides,
                                   const std::vector<int>& paddings,
                                   bool global_pooling,
                                   bool adaptive,
                                   MetaTensor* dx);

159 160
void MeshgridGradInferMeta(const std::vector<const MetaTensor*>& inputs,
                           const std::vector<const MetaTensor*>& outputs_grad,
Y
YuanRisheng 已提交
161 162
                           std::vector<MetaTensor*> inputs_grad);

163
void MultiDotGradInferMeta(const std::vector<const MetaTensor*>& x,
164 165 166 167 168 169 170
                           const MetaTensor& out_grad,
                           std::vector<MetaTensor*> x_grad);

void MultiplexGradInferMeta(const MetaTensor& ids,
                            const MetaTensor& out_grad,
                            std::vector<MetaTensor*> ins_grad);

Z
zyfncg 已提交
171 172 173 174 175 176 177 178 179 180
void NllLossGradInferMeta(const MetaTensor& input,
                          const MetaTensor& label,
                          paddle::optional<const MetaTensor&> weight,
                          const MetaTensor& total_weight,
                          const MetaTensor& out_grad,
                          int64_t ignore_index,
                          const std::string& reduction,
                          MetaTensor* intput_grad,
                          MetaConfig config = MetaConfig());

181 182 183 184 185
void PixelUnshuffleGradInferMeta(const MetaTensor& out_grad,
                                 int downscale_factor,
                                 const std::string& data_format,
                                 MetaTensor* x_grad);

F
From00 已提交
186 187 188 189 190 191 192 193 194 195
void PsroiPoolGradInferMeta(const MetaTensor& x,
                            const MetaTensor& rois,
                            paddle::optional<const MetaTensor&> rois_num,
                            const MetaTensor& dout,
                            int pooled_height,
                            int pooled_width,
                            int output_channels,
                            float spatial_scale,
                            MetaTensor* dx);

F
From00 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
void PoolGradInferMeta(const MetaTensor& x,
                       const MetaTensor& out,
                       const MetaTensor& dout,
                       const std::vector<int>& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool ceil_mode,
                       bool exclusive,
                       const std::string& data_format,
                       const std::string& pooling_type,
                       bool global_pooling,
                       bool adaptive,
                       const std::string& padding_algorithm,
                       MetaTensor* dx);

Z
zyfncg 已提交
211 212
void RealAndImagGradInferMeta(const MetaTensor& out_grad, MetaTensor* dx);

213 214 215 216
void ReshapeDoubleGradInferMeta(const MetaTensor& out_grad,
                                const MetaTensor& x_grad_grad,
                                MetaTensor* out_grad_grad);

217 218 219 220 221 222 223 224 225 226 227 228 229
void ScatterGradInferMeta(const MetaTensor& index,
                          const MetaTensor& updates,
                          const MetaTensor& out_grad,
                          bool overwrite,
                          MetaTensor* x_grad,
                          MetaTensor* updates_grad);

void ScatterNdAddGradInferMeta(const MetaTensor& index,
                               const MetaTensor& updates,
                               const MetaTensor& out_grad,
                               MetaTensor* x_grad,
                               MetaTensor* updates_grad);

230 231 232 233
void StackGradInferMeta(const MetaTensor& out_grad,
                        int axis,
                        std::vector<MetaTensor*> x_grad);

234
}  // namespace phi