backward.h 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <tuple>
18

19
#include "paddle/phi/core/meta_tensor.h"
H
hong 已提交
20 21 22
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/ternary.h"
H
hong 已提交
23
#include "paddle/phi/infermeta/unary.h"
24

25
namespace phi {
26

27 28 29 30
// Common InferMeta Functions for backward operators.
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

31 32 33 34 35 36 37 38 39
void BilinearTensorProductGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& y,
                                        const MetaTensor& weight,
                                        const MetaTensor& dout,
                                        MetaTensor* dx,
                                        MetaTensor* dy,
                                        MetaTensor* dweight,
                                        MetaTensor* dbias);

F
From00 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
void ConvTransposeGradInferMeta(const MetaTensor& x,
                                const MetaTensor& filter,
                                const MetaTensor& dout,
                                const std::vector<int>& strides,
                                const std::vector<int>& paddings,
                                const std::vector<int>& output_padding,
                                const std::vector<int>& output_size,
                                const std::string& padding_algorithm,
                                int groups,
                                const std::vector<int>& dilations,
                                const std::string& data_format,
                                MetaTensor* dx,
                                MetaTensor* dfilter);

void Conv2dTransposeDoubleGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& filter,
                                        const MetaTensor& dout,
                                        const MetaTensor& ddx,
                                        const MetaTensor& ddfilter,
                                        const std::vector<int>& strides,
                                        const std::vector<int>& paddings,
                                        const std::vector<int>& output_padding,
                                        const std::vector<int>& output_size,
                                        const std::string& padding_algorithm,
                                        int groups,
                                        const std::vector<int>& dilations,
                                        const std::string& data_format,
                                        MetaTensor* dx,
                                        MetaTensor* dfilter,
                                        MetaTensor* ddout);

71 72 73 74 75 76 77 78 79 80 81
void CrossEntropyWithSoftmaxGradInferMeta(const MetaTensor& label,
                                          const MetaTensor& softmax,
                                          const MetaTensor& loss_grad,
                                          bool soft_label,
                                          bool use_softmax,
                                          bool numeric_stable_mode,
                                          int ignore_index,
                                          int axis,
                                          MetaTensor* logits_grad,
                                          MetaConfig config = MetaConfig());

82 83 84 85
void GatherNdGradInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& out_grad,
                           MetaTensor* x_grad);
86

87 88 89 90
void GeneralBinaryGradInferMeta(const MetaTensor& x,
                                const MetaTensor& y,
                                MetaTensor* dx,
                                MetaTensor* dy);
91

92 93 94 95 96 97 98
void GeneralTernaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz);

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
void GeneralQuaternaryGradInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& z,
                                    const MetaTensor& k,
                                    MetaTensor* dx,
                                    MetaTensor* dy,
                                    MetaTensor* dz,
                                    MetaTensor* dk);

void GeneralQuinaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 const MetaTensor& k,
                                 const MetaTensor& l,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz,
                                 MetaTensor* dk,
                                 MetaTensor* dl);

119 120
void GeneralUnaryGradInferMeta(const MetaTensor& x, MetaTensor* dx);

F
From00 已提交
121 122 123 124
void GumbelSoftmaxGradInferMeta(const MetaTensor& out,
                                const MetaTensor& dout,
                                int axis,
                                MetaTensor* dx);
125

126 127
void KernelWithXShapeInferMeta(const MetaTensor& xshape, MetaTensor* dx);

F
From00 已提交
128 129 130 131 132 133 134 135 136 137
void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
                                   const MetaTensor& mask,
                                   const MetaTensor& dout,
                                   const std::vector<int>& kernel_size,
                                   const std::vector<int>& strides,
                                   const std::vector<int>& paddings,
                                   bool global_pooling,
                                   bool adaptive,
                                   MetaTensor* dx);

Y
YuanRisheng 已提交
138 139 140 141
void MeshgridGradInferMeta(const std::vector<MetaTensor*>& inputs,
                           const std::vector<MetaTensor*>& outputs_grad,
                           std::vector<MetaTensor*> inputs_grad);

Z
zyfncg 已提交
142 143 144 145 146 147 148 149 150 151
void NllLossGradInferMeta(const MetaTensor& input,
                          const MetaTensor& label,
                          paddle::optional<const MetaTensor&> weight,
                          const MetaTensor& total_weight,
                          const MetaTensor& out_grad,
                          int64_t ignore_index,
                          const std::string& reduction,
                          MetaTensor* intput_grad,
                          MetaConfig config = MetaConfig());

F
From00 已提交
152 153 154 155 156 157 158 159 160 161
void PsroiPoolGradInferMeta(const MetaTensor& x,
                            const MetaTensor& rois,
                            paddle::optional<const MetaTensor&> rois_num,
                            const MetaTensor& dout,
                            int pooled_height,
                            int pooled_width,
                            int output_channels,
                            float spatial_scale,
                            MetaTensor* dx);

F
From00 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
void PoolGradInferMeta(const MetaTensor& x,
                       const MetaTensor& out,
                       const MetaTensor& dout,
                       const std::vector<int>& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool ceil_mode,
                       bool exclusive,
                       const std::string& data_format,
                       const std::string& pooling_type,
                       bool global_pooling,
                       bool adaptive,
                       const std::string& padding_algorithm,
                       MetaTensor* dx);

Z
zyfncg 已提交
177 178
void RealAndImagGradInferMeta(const MetaTensor& out_grad, MetaTensor* dx);

179 180 181 182
void ReshapeDoubleGradInferMeta(const MetaTensor& out_grad,
                                const MetaTensor& x_grad_grad,
                                MetaTensor* out_grad_grad);

183 184 185 186 187 188 189 190 191 192 193 194 195
void ScatterGradInferMeta(const MetaTensor& index,
                          const MetaTensor& updates,
                          const MetaTensor& out_grad,
                          bool overwrite,
                          MetaTensor* x_grad,
                          MetaTensor* updates_grad);

void ScatterNdAddGradInferMeta(const MetaTensor& index,
                               const MetaTensor& updates,
                               const MetaTensor& out_grad,
                               MetaTensor* x_grad,
                               MetaTensor* updates_grad);

196 197 198 199
void StackGradInferMeta(const MetaTensor& out_grad,
                        int axis,
                        std::vector<MetaTensor*> x_grad);

200
}  // namespace phi