analysis_predictor.cc 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/ir/pass.h"
28
#include "paddle/fluid/framework/naive_executor.h"
29
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/var_type_traits.h"
31
#include "paddle/fluid/framework/version.h"
32
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
34
#include "paddle/fluid/inference/api/helper.h"
35
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
36
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/memory/memcpy.h"
39
#include "paddle/fluid/platform/cpu_helper.h"
40
#include "paddle/fluid/platform/device_context.h"
41
#include "paddle/fluid/platform/gpu_info.h"
42
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
43 44
#include "paddle/fluid/platform/profiler.h"

45 46 47 48
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

49 50 51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
53 54
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
55
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
56 57
#endif

58 59
namespace paddle {

N
nhzlx 已提交
60
using inference::Singleton;
N
nhzlx 已提交
61
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
62
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
63 64
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
65
#endif
66

67 68 69 70
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
71 72
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
73 74 75 76 77 78
    return true;
  }
  return false;
}
}  // namespace

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
  } else {
#ifdef PADDLE_WITH_CUDA
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
112
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
130
bool AnalysisPredictor::Init(
131 132
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
133
  VLOG(3) << "Predictor::init()";
134 135
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
136 137
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
138
    platform::EnableProfiler(tracking_device);
139 140 141
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
142 143
  }

144
  // no matter with or without MKLDNN
L
luotao1 已提交
145
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
146

147 148 149 150 151 152 153 154 155 156 157 158 159
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
160
  }
161 162 163 164 165 166 167 168 169

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
170
  if (parent_scope) {
171 172 173
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
174
    scope_ = parent_scope;
175
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
176
  } else {
177
    paddle::framework::InitDevices(false);
Y
Yan Chunwei 已提交
178
    scope_.reset(new paddle::framework::Scope());
179
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
180
  }
181 182 183 184 185
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
186 187
  if (!program) {
    if (!LoadProgramDesc()) return false;
188 189 190 191 192 193 194
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
195 196
    if (!CheckOperatorCompatible()) {
      LOG(WARNING) << "WARNING: Results may be DIFF! "
197 198
                      "Please use the corresponding version of the model and "
                      "prediction library, and do not use the develop branch.";
199
    }
200 201
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

202 203 204 205
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
206
  } else {
207 208
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
209 210
    inference_program_ = program;
  }
M
Michal Gallus 已提交
211

212 213 214 215 216
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
217
  if (config_.use_gpu()) {
218
    status_use_gpu_ = true;
219 220 221 222 223 224 225 226 227 228
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
#ifdef PADDLE_WITH_CUDA
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
229 230 231 232 233 234 235 236
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
237
                     config_.use_feed_fetch_ops_);
238

239
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
240

241 242 243
  return true;
}

244 245 246
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::Run get_cur_mkldnn_session_id="
247
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
248 249 250
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
251 252 253 254
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
255 256 257 258 259 260 261 262 263
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
    for (size_t i = 0; i < inputs.size(); ++i) {
      for (size_t j = 0; j < inputs[i].shape.size(); ++j) {
        ss << inputs[i].shape[j] << "-";
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
264
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
265 266 267 268 269 270 271 272
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
273 274 275 276 277 278 279 280
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
281 282 283 284
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
285 286 287 288
  }
#endif
}

289 290 291
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
292
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
293 294 295
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
296
  VLOG(3) << "Predictor::predict";
297 298 299 300
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
301
  PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
302 303
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
304
    return false;
305
  }
M
Michal Gallus 已提交
306

307 308 309
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
310

311 312 313 314
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
315
  }
Y
Yan Chunwei 已提交
316

M
minqiyang 已提交
317
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
318

Y
Yan Chunwei 已提交
319 320 321 322 323
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
324 325 326
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
327
  tensor_array_batch_cleaner_.ResetNoTensorVars();
328 329 330 331

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
332 333
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
334
#endif
335
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
336 337 338 339
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
340
#endif
341 342
  return true;
}
343

344 345
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
346
  VLOG(3) << "Predictor::set_feed";
347 348 349 350 351 352 353 354 355 356
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
357 358
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
359 360 361
      return false;
    }
    int idx = -1;
362
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
363 364
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
365 366
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
367 368
      }
      idx = feed_names_[name];
369
    } else {
370
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
371
    }
372
    framework::SetFeedVariable(scope, *input, "feed", idx);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
399
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
400 401
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
402
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
403
    PADDLE_ENFORCE((size_t)idx == i);
404
    framework::FetchType &fetch_var =
405
        framework::GetFetchVariable(*scope, "fetch", idx);
406
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
407 408
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
409
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
410
    if (type == framework::proto::VarType::FP32) {
411 412
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
413
    } else if (type == framework::proto::VarType::INT64) {
414 415
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
416 417 418
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
419
    } else {
420
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
421 422
    }
  }
Y
Yan Chunwei 已提交
423 424
  return true;
}
425

426
void AnalysisPredictor::PrepareArgument() {
427
  argument_.SetUseGPU(config_.use_gpu());
428
  argument_.SetUseFcPadding(config_.use_fc_padding());
429
  argument_.SetGPUDeviceId(config_.gpu_device_id());
430
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
431
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
432
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
433
  // Analyze inference_program
434
  argument_.SetPredictorID(predictor_id_);
435
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
436 437
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
438 439
  } else {
    PADDLE_ENFORCE(
440
        !config_.params_file().empty(),
T
Tao Luo 已提交
441
        "Either model_dir or (param_file, prog_file) should be set.");
442
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
443
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
444

445 446
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
447
  }
448

449
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
450
    LOG(INFO) << "TensorRT subgraph engine is enabled";
451 452 453
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
454
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
455
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
456
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
457
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
458 459 460
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
461
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
462
  }
463

石晓伟 已提交
464 465 466 467 468 469 470
  if (config_.lite_engine_enabled()) {
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

471
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
472
    LOG(INFO) << "MKLDNN is enabled";
473 474 475
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

476 477 478 479 480 481 482 483 484 485
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

486
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
487 488 489 490
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
491
  argument_.SetDisableLogs(config_.glog_info_disabled());
492
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
493
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
494
  argument_.SetScopeNotOwned(scope_.get());
495 496 497 498 499
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
500 501 502 503 504
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
505
  inference_program_.reset(
506
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
507 508 509 510
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
511
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
512
}
513 514

template <>
515 516
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
P
Pei Yang 已提交
517 518 519 520
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
521
  VLOG(3) << "create AnalysisConfig";
522 523
  PADDLE_ENFORCE(config.is_valid(),
                 "Note: Each config can only be used for one predictor.");
524

525
  if (config.use_gpu()) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        gflags.push_back("--allocator_strategy=naive_best_fit");
        process_level_allocator_enabled = true;
      }

      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
582 583 584 585 586 587
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
588 589 590 591
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
592 593
  // Each config can only be used for one predictor.
  config.SetInValid();
594 595 596 597 598 599 600
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
601 602
    return nullptr;
  }
603

G
Gabor Buella 已提交
604
  return predictor;
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

619
void AnalysisPredictor::PrepareFeedFetch() {
620 621
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
622 623
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
624
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
625 626 627 628 629
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
630
      idx2feeds_[idx] = op->Output("Out")[0];
631
    } else if (op->Type() == "fetch") {
632
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
633 634
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
635
      }
Y
Yan Chunwei 已提交
636
      fetches_[idx] = op;
N
nhzlx 已提交
637
      idx2fetches_[idx] = op->Input("X")[0];
638 639 640 641
    }
  }
}

642 643 644
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
645
  var->GetMutable<framework::FeedList>();
646
  var = scope->Var("fetch");
647
  var->GetMutable<framework::FetchList>();
648 649
}

N
nhzlx 已提交
650 651 652 653 654 655 656 657
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

658 659 660 661 662 663 664 665 666 667 668 669
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var, "input %s does not exist.", name);
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
670 671 672 673 674 675 676 677
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

678 679 680 681 682 683 684
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
685 686 687
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
688
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
689 690 691
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

692 693 694 695 696 697 698 699 700 701
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
702 703 704
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
705
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
706 707
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
708 709 710 711
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
712
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
713
  executor_->Run();
Y
Yan Chunwei 已提交
714
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
715
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
716
  tensor_array_batch_cleaner_.ResetTensorArray();
717 718 719 720

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
721
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
722 723 724 725 726
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
727 728 729 730 731
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
732
  std::string filename;
733 734 735
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
736 737 738
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
739
    filename = config_.prog_file();
740
  } else {
741
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
742 743 744 745
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
746
    LOG(ERROR) << string::Sprintf(
747 748
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
749 750
    return false;
  }
751 752 753

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
754
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
755 756 757
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
758 759
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
760 761 762 763 764 765 766 767
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
768
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
769
  }
770 771 772 773 774 775 776
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
777

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

798
      if (!config_.params_file().empty()) {
799 800 801 802 803 804
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
805
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
806 807 808 809 810
        op->CheckAttrs();
      }
    }
  }

811
  if (!config_.params_file().empty()) {
812 813 814 815 816 817
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
818
    op->SetAttr("file_path", {config_.params_file()});
819 820 821 822
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
823
  framework::NaiveExecutor e(place_);
824 825 826 827
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

828 829
  return true;
}
830

N
nhzlx 已提交
831
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
832 833 834 835 836 837 838
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
839
          BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
840
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
841 842 843 844
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
845 846
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
847
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
848
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
849 850
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
851 852 853
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
854

N
nhzlx 已提交
855
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
856 857 858
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
859

N
nhzlx 已提交
860 861 862 863 864
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
865
      std::string calibration_table_data_path =
N
nhzlx 已提交
866 867 868 869
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
870 871 872 873 874

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
875 876 877 878
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
879
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
880 881
  return true;
}
N
nhzlx 已提交
882
#endif
N
nhzlx 已提交
883

884
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
885
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
886
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
887 888
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
889 890
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
891
#endif
892
  if (config_.with_profile_) {
893 894 895 896 897 898
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
899

900 901 902 903 904 905
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
906 907
}

908
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
909
  std::lock_guard<std::mutex> lk(clone_mutex_);
910 911 912 913 914
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

915
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
916 917 918
  return inference_program_->Proto()->SerializeAsString();
}

919 920
bool AnalysisPredictor::CheckOperatorCompatible() {
  if (!inference_program_) {
921 922 923
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Inference program version check failed because the program does not "
        "exist."));
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    return false;
  }
  bool res = true;
  op_compatible_map_.ReadFromProto(*inference_program_->OpCompatibleMap());
  const auto &version = framework::DumpVersion(framework::kCurProgramVersion);
  LOG(INFO) << "MODEL VERSION: "
            << framework::DumpVersion(inference_program_->Version());
  LOG(INFO) << "PREDICTOR VERSION: " << version;
  std::set<std::string> op_types;
  for (size_t i = 0; i < inference_program_->Size(); ++i) {
    const auto &block = inference_program_->Block(i);
    for (const auto *op : block.AllOps()) {
      op_types.insert(op->Type());
    }
  }
  for (const auto type : op_types) {
    auto compatible_type =
        op_compatible_map_.IsRequireMiniVersion(type, version);
    if (compatible_type != framework::OpCompatibleType::compatible) {
943 944 945 946
      if (!framework::kCurProgramVersion) {
        LOG(WARNING) << " - Version incompatible ("
                     << static_cast<int>(compatible_type) << ") " << type;
      }
947 948 949 950 951 952
      res = false;
    }
  }
  return res;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
992
template <>
993 994 995 996
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
997 998
}

999
}  // namespace paddle
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1022 1023
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1024
USE_TRT_CONVERTER(split);
1025 1026
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1027
USE_TRT_CONVERTER(leaky_relu);
1028 1029
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1030
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1031 1032 1033
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1034 1035
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1036
USE_TRT_CONVERTER(slice);
1037
USE_TRT_CONVERTER(scale);
R
ReeseWang 已提交
1038
USE_TRT_CONVERTER(stack);
1039
#endif