jit_kernel_test.cc 24.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17
#include <cmath>    // for exp
T
tensor-tang 已提交
18
#include <cstring>  // for memcpy
T
tensor-tang 已提交
19
#include <random>
T
tensor-tang 已提交
20 21 22 23 24
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
25
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28 29 30 31 32 33 34
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
35 36
constexpr int repeat = 20000;

T
tensor-tang 已提交
37 38 39
// TODO(TJ): benchmark and test should be seperated,
// benchmark should verify more sizes

T
tensor-tang 已提交
40 41 42 43 44 45 46
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
T
tensor-tang 已提交
47 48
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
49 50 51 52 53 54 55 56
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66
#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
  __m256 tmp = _mm256_loadu_ps(x);
  tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());
  _mm256_storeu_ps(y, tmp);
}
#endif

TEST(JitKernel, vrelu) {
  namespace jit = paddle::operators::math::jitkernel;
67
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
68
  for (int d : {3, 7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -10.f, 1.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
79
      refer::VRelu<float>(x_data, zref_data, d);
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88
    }
    auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vrelu_intri8(d, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
89
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
90 91 92 93
    }
#endif
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
94
      ker->Compute(x_data, ztgt_data, d);
T
tensor-tang 已提交
95 96
    }
    auto ttgte = GetCurrentUS();
97 98 99
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
100 101 102 103 104 105
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
106 107
TEST(JitKernel, vaddbias) {
  namespace jit = paddle::operators::math::jitkernel;
108
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
109 110 111 112 113 114 115 116 117 118 119 120
  for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float a = 2.f;
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
121
      refer::VAddBias<float>(&a, x_data, zref_data, d);
T
tensor-tang 已提交
122 123 124 125
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
126
      ker->Compute(&a, x_data, ztgt_data, d);
T
tensor-tang 已提交
127 128 129
    }
    auto ttgte = GetCurrentUS();

130 131 132
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
133 134 135 136 137 138
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
139 140 141 142 143 144 145 146
#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
  paddle::platform::dynload::vsExp(n, x, y);
}
#endif

TEST(JitKernel, vexp) {
  namespace jit = paddle::operators::math::jitkernel;
147
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
148
  for (int d : {1, 3, 4, 6, 7, 8, 12, 15, 16, 20, 30, 128, 256}) {
T
tensor-tang 已提交
149 150 151 152 153 154 155 156 157 158
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
159
      refer::VExp<float>(x_data, zref_data, d);
T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_mkl(d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
173
      // ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
174
      ker->Compute(x_data, ztgt_data, d);
T
tensor-tang 已提交
175 176 177
    }
    auto ttgte = GetCurrentUS();

178 179
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
180
#ifdef PADDLE_WITH_MKLML
181
             << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
182
#else
183
             << " us, "
T
tensor-tang 已提交
184
#endif
185
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
186 187
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
188 189 190 191 192 193 194 195 196 197 198 199 200 201
    }
  }
}

void vsigmoid_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
    const int n, const float* x, float* y) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = 0.f - y[i];
  }
T
tensor-tang 已提交
202
  vexp->Compute(y, y, n);
203 204 205 206 207 208 209
  for (int i = 0; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
}

TEST(JitKernel, vsigmoid) {
  namespace jit = paddle::operators::math::jitkernel;
210
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
211
  for (int d : {1, 3, 4, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vexp =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_better(vexp, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
229
      refer::VSigmoid<float>(x_data, zref_data, d);
230 231 232 233
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
234
      ker->Compute(x_data, ztgt_data, d);
235 236 237
    }
    auto ttgte = GetCurrentUS();

238 239 240 241
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vtanh_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddBiasKernel<float>>&
        vaddbias,
    const int n, const float* x, float* y) {
T
tensor-tang 已提交
258 259
  const float a = 2.f, b = -1.f;
  vscal->Compute(&a, x, y, n);
T
tensor-tang 已提交
260
  vsigmoid->Compute(y, y, n);
T
tensor-tang 已提交
261 262
  vscal->Compute(&a, y, y, n);
  vaddbias->Compute(&b, y, y, n);
T
tensor-tang 已提交
263 264 265 266
}

TEST(JitKernel, vtanh) {
  namespace jit = paddle::operators::math::jitkernel;
267
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
268
  for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
T
tensor-tang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vscal =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const auto& vsigmoid =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vaddbias =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_better(vscal, vsigmoid, vaddbias, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
290
      refer::VTanh<float>(x_data, zref_data, d);
T
tensor-tang 已提交
291 292 293 294
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
295
      ker->Compute(x_data, ztgt_data, d);
T
tensor-tang 已提交
296 297 298
    }
    auto ttgte = GetCurrentUS();

299 300 301 302
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
303 304
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
T
tensor-tang 已提交
305 306 307 308
    }
  }
}

T
tensor-tang 已提交
309 310 311 312 313 314 315 316 317 318 319 320
void lstm_ctht_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid_3d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VMulKernel<float>>& vmul_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd_d,
    const int d, float* gates, const float* ct_1, float* ct, float* ht) {
  int d2 = d * 2;
T
tensor-tang 已提交
321 322
  vsigmoid_3d->Compute(gates + d, gates + d, 3 * d);
  vtanh_d->Compute(gates, gates, d);
T
tensor-tang 已提交
323 324
  vmul_d->Compute(gates, gates + d, gates + d, d);
  vmul_d->Compute(ct_1, gates + d2, gates + d2, d);
T
tensor-tang 已提交
325
  vadd_d->Compute(gates + d, gates + d2, ct, d);
T
tensor-tang 已提交
326
  /* H_t = act_cell(C_t) * ogated */
T
tensor-tang 已提交
327
  vtanh_d->Compute(ct, gates + d2, d);
T
tensor-tang 已提交
328
  vmul_d->Compute(gates + d2, gates + d * 3, ht, d);
T
tensor-tang 已提交
329 330 331 332
}

TEST(JitKernel, lstm) {
  namespace jit = paddle::operators::math::jitkernel;
333
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
334
  for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100}) {
T
tensor-tang 已提交
335 336 337 338 339 340 341 342 343
    int d4 = d * 4;
    int d3 = d * 3;
    std::vector<float> x(d4), xref(d4);
    std::vector<float> ct_1(d), ct_tgt(d), ht_tgt(d);
    std::vector<float> ct_ref(d), ht_ref(d);
    RandomVec<float>(d4, x.data(), -2.f, 2.f);
    RandomVec<float>(d, ct_1.data(), -2.f, 2.f);
    memcpy(xref.data(), x.data(), sizeof(float) * d4);
    std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
344
    const jit::lstm_attr_t attr(d, act_gate, act_cand, act_cell, false);
T
tensor-tang 已提交
345 346
    const auto& ker =
        jit::KernelPool::Instance()
347 348
            .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
                attr);
T
tensor-tang 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    // below kernels are used to compute refer
    const auto& vsigmoid_3d =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(
            d3);
    const auto& vtanh_d =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vmul_d =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const auto& vadd_d =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);

    float* x_data = x.data();
    float* xref_data = xref.data();
    const float* ct_1_data = ct_1.data();
    float* ct_tgt_data = ct_tgt.data();
    float* ht_tgt_data = ht_tgt.data();
    float* ct_ref_data = ct_ref.data();
    float* ht_ref_data = ht_ref.data();
    // compute once to check correctness
368 369 370 371 372 373 374
    jit::lstm_t step;
    step.gates = xref_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_ref_data;
    step.ht = ht_ref_data;
    refer::LSTMCtHt<float>(&step, &attr);

375 376 377 378
    step.gates = x_data;
    step.ct = ct_tgt_data;
    step.ht = ht_tgt_data;
    ker->ComputeCtHt(&step, &attr);
T
tensor-tang 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ct_tgt_data[i], ct_ref_data[i], 1e-3);
      EXPECT_NEAR(ht_tgt_data[i], ht_ref_data[i], 1e-3);
    }

    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      lstm_ctht_better(vsigmoid_3d, vtanh_d, vmul_d, vadd_d, d, xref_data,
                       ct_1_data, ct_ref_data, ht_ref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
392
      refer::LSTMCtHt<float>(&step, &attr);
T
tensor-tang 已提交
393 394 395 396
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
397
      ker->ComputeCtHt(&step, &attr);
T
tensor-tang 已提交
398 399
    }
    auto ttgte = GetCurrentUS();
400 401 402 403
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit) takes: " << (tmkle - tmkls) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
404 405 406
  }
}

T
tensor-tang 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(x, tmp);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
  paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif

TEST(JitKernel, vscal) {
  namespace jit = paddle::operators::math::jitkernel;
432
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    std::memcpy(y.data(), x.data(), sizeof(float) * d);
    float a = 2.f;
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const float* x_data = x.data();
    float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
447
      refer::VScal<float>(&a, x_data, zref_data, d);
T
tensor-tang 已提交
448 449 450 451
    }
    auto trefe = GetCurrentUS();
    auto trefs1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
452
      refer::VScal<float>(&a, y_data, y_data, d);
T
tensor-tang 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    }
    auto trefe1 = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_mkl(d, a, y_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_intri8(d, a, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      auto si2 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_inp_intri8(d, a, y_data);
      }
      auto si3 = GetCurrentUS();
476 477
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
               << " us, inplace: " << (si3 - si2) / repeat;
T
tensor-tang 已提交
478 479 480 481 482
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
483
      ker->Compute(&a, x_data, ztgt_data, d);
T
tensor-tang 已提交
484 485 486 487
    }
    auto ttgte = GetCurrentUS();
    auto ttgts1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
488
      ker->Compute(&a, y_data, y_data, d);
T
tensor-tang 已提交
489 490
    }
    auto ttgte1 = GetCurrentUS();
491 492 493
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, inplace takes: " << (trefe1 - trefs1) / repeat
T
tensor-tang 已提交
494
#ifdef PADDLE_WITH_MKLML
495 496
             << " us, mkl inplace takes: " << (tmkle - tmkls) / repeat
             << " us, "
T
tensor-tang 已提交
497
#else
498
             << " us, "
T
tensor-tang 已提交
499
#endif
500 501
             << "tgt takes: " << (ttgte - ttgts) / repeat
             << "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat;
T
tensor-tang 已提交
502 503 504 505 506
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}
T
tensor-tang 已提交
507

T
tensor-tang 已提交
508
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
509
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
510 511 512 513 514 515 516
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
517

T
tensor-tang 已提交
518 519 520
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
521
}
T
tensor-tang 已提交
522
#endif
T
tensor-tang 已提交
523

T
tensor-tang 已提交
524 525
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
526
  namespace refer = paddle::operators::math::jitkernel::refer;
527
  for (int d : {7, 8, 15, 16, 20, 30, 256, 512, 1000, 1024}) {
T
tensor-tang 已提交
528 529 530 531 532 533 534 535 536 537
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
538
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
539
    for (int i = 0; i < repeat; ++i) {
540
      refer::VMul<float>(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
541
    }
T
tensor-tang 已提交
542
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
543

T
tensor-tang 已提交
544 545
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
546
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
547
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
548
    }
T
tensor-tang 已提交
549 550
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
551

T
tensor-tang 已提交
552 553 554 555
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
556
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
557 558
      }
      auto si1 = GetCurrentUS();
559
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
560 561 562 563 564
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
565
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
566 567 568
    }
    auto ttgte = GetCurrentUS();

569 570
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
571
#ifdef PADDLE_WITH_MKLML
572
             << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
573
#else
574
             << " us, "
T
tensor-tang 已提交
575
#endif
576
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
601
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
615
      refer::VAdd<float>(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
634
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
635 636 637
    }
#endif

T
tensor-tang 已提交
638 639
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
640
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
641 642 643
    }
    auto ttgte = GetCurrentUS();

644 645
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
646
#ifdef PADDLE_WITH_MKLML
647
             << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
648
#else
649
             << " us, "
T
tensor-tang 已提交
650
#endif
651
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
652 653 654 655 656 657
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
658 659 660 661 662
void vaddrelu_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VReluKernel<float>>& vrelu,
T
tensor-tang 已提交
663 664
    const float* x, const float* y, float* z, int d) {
  vadd->Compute(x, y, z, d);
T
tensor-tang 已提交
665
  vrelu->Compute(z, z, d);
T
tensor-tang 已提交
666 667 668 669
}

TEST(JitKernel, vaddrelu) {
  namespace jit = paddle::operators::math::jitkernel;
670
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddReluKernel<float>>(d);
    const auto& vadd =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const auto& vrelu =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
688
      refer::VAddRelu<float>(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
689 690 691 692
    }
    auto trefe = GetCurrentUS();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
693
      vaddrelu_better(vadd, vrelu, x_data, y_data, zref_data, d);
T
tensor-tang 已提交
694 695 696 697
    }
    auto tmkle = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
698
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
699 700
    }
    auto ttgte = GetCurrentUS();
701 702 703 704
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better takes: " << (tmkle - tmkls) / repeat << " us, "
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
705 706 707 708 709 710
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
711 712 713 714
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
715 716
  jit::lstm_attr_t attr(frame_size, act_gate, act_cand, act_cell, false);

717 718
  // empty call it to avoid unknown flag 'use_pinned_memory' on Mac
  paddle::platform::jit::MayIUse(paddle::platform::jit::avx);
T
tensor-tang 已提交
719
  const auto& plstm1 =
T
tensor-tang 已提交
720
      jit::KernelPool::Instance()
721 722
          .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);

T
tensor-tang 已提交
723
  const auto& plstm2 =
T
tensor-tang 已提交
724
      jit::KernelPool::Instance()
725 726 727
          .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);
  EXPECT_EQ(plstm1, plstm2);

T
tensor-tang 已提交
728 729
  const auto& peephole =
      jit::KernelPool::Instance()
730 731
          .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
              jit::lstm_attr_t(frame_size, act_gate, act_cand, act_cell, true));
T
tensor-tang 已提交
732
  EXPECT_TRUE(plstm1 != peephole);
T
tensor-tang 已提交
733

T
tensor-tang 已提交
734
  const auto& pvmul_f =
T
tensor-tang 已提交
735
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
736 737
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
738

T
tensor-tang 已提交
739
  const auto& pvmul_d =
T
tensor-tang 已提交
740
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
741 742
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
T
tensor-tang 已提交
743

T
tensor-tang 已提交
744
  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulfjit4");
T
tensor-tang 已提交
745 746 747 748 749
#if defined(__APPLE__) || defined(__OSX__) || defined(_WIN32)
  EXPECT_EQ(pvmul_from_key, nullptr);
#else
  EXPECT_EQ(pvmul_from_key, pvmul_f);
#endif
T
tensor-tang 已提交
750
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulfjit");
T
tensor-tang 已提交
751
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
752
}