jit_kernel_test.cc 26.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17
#include <cmath>    // for exp
T
tensor-tang 已提交
18
#include <cstring>  // for memcpy
T
tensor-tang 已提交
19
#include <random>
T
tensor-tang 已提交
20 21 22 23 24 25
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
26 27 28 29 30 31 32 33
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
34 35
constexpr int repeat = 20000;

T
tensor-tang 已提交
36 37 38 39 40 41 42
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
T
tensor-tang 已提交
43 44
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
45 46 47 48 49 50 51 52
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
void vrelu_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0.f ? x[i] : 0.f;
  }
}

#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
  __m256 tmp = _mm256_loadu_ps(x);
  tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());
  _mm256_storeu_ps(y, tmp);
}
#endif

TEST(JitKernel, vrelu) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -10.f, 1.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vrelu_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vrelu_intri8(d, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
90
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
91 92 93 94 95 96 97
    }
#endif
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(x_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();
98 99 100
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
101 102 103 104 105 106
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
void vaddbias_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] + a;
  }
}

TEST(JitKernel, vaddbias) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float a = 2.f;
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vaddbias_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
132
      ker->Compute(&a, x_data, ztgt_data, d);
T
tensor-tang 已提交
133 134 135
    }
    auto ttgte = GetCurrentUS();

136 137 138
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
139 140 141 142 143 144
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
void vexp_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
  paddle::platform::dynload::vsExp(n, x, y);
}
#endif

TEST(JitKernel, vexp) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
159
  for (int d : {7, 8, 15, 16, 30, 128, 256}) {
T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_mkl(d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
184
      ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
185 186 187
    }
    auto ttgte = GetCurrentUS();

188 189
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
190
#ifdef PADDLE_WITH_MKLML
191
             << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
192
#else
193
             << " us, "
T
tensor-tang 已提交
194
#endif
195
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
196 197
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    }
  }
}

inline float _sigmoid(float x) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  float tmp = (x < min) ? min : ((x > max) ? max : x);
  return 1.f / (1.f + std::exp(-tmp));
}

void vsigmoid_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _sigmoid(x[i]);
  }
}

void vsigmoid_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
    const int n, const float* x, float* y) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = 0.f - y[i];
  }
T
tensor-tang 已提交
225
  vexp->Compute(y, y);
226 227 228 229 230 231 232
  for (int i = 0; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
}

TEST(JitKernel, vsigmoid) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
233
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vexp =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_better(vexp, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
256
      ker->Compute(x_data, ztgt_data);
257 258 259
    }
    auto ttgte = GetCurrentUS();

260 261 262 263
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

inline float _tanh(float x) { return 2.f * _sigmoid(2.f * x) - 1.f; }

void vtanh_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _tanh(x[i]);
  }
}

void vtanh_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddBiasKernel<float>>&
        vaddbias,
    const int n, const float* x, float* y) {
T
tensor-tang 已提交
288 289
  const float a = 2.f, b = -1.f;
  vscal->Compute(&a, x, y, n);
T
tensor-tang 已提交
290
  vsigmoid->Compute(y, y);
T
tensor-tang 已提交
291 292
  vscal->Compute(&a, y, y, n);
  vaddbias->Compute(&b, y, y, n);
T
tensor-tang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

TEST(JitKernel, vtanh) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vscal =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const auto& vsigmoid =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vaddbias =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_better(vscal, vsigmoid, vaddbias, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
324
      ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
325 326 327
    }
    auto ttgte = GetCurrentUS();

328 329 330 331
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
332 333
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
T
tensor-tang 已提交
334 335 336 337
    }
  }
}

T
tensor-tang 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
void lstm_ctht_ref(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid_3d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp_1,
    const int d, float* gates, const float* ct_1, float* ct, float* ht) {
  vsigmoid_3d->Compute(gates + d, gates + d);
  vtanh_d->Compute(gates, gates);
  const float *i = gates + d, *f = gates + d * 2, *o = gates + d * 3;
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int k = 0; k < d; ++k) {
    // C_t = C_t-1 * fgated + cand_gated * igated
    ct[k] = ct_1[k] * f[k] + gates[k] * i[k];
    // H_t = act_cell(C_t) * ogated
    float tmp = ct[k] * 2;
    tmp = 0.f - ((tmp < min) ? min : ((tmp > max) ? max : tmp));
    vexp_1->Compute(&tmp, &tmp);
    tmp = 2.f / (1.f + tmp) - 1.f;
    ht[k] = tmp * o[k];
  }
}

void lstm_ctht_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid_3d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VMulKernel<float>>& vmul_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd_d,
    const int d, float* gates, const float* ct_1, float* ct, float* ht) {
  int d2 = d * 2;
  vsigmoid_3d->Compute(gates + d, gates + d);
  vtanh_d->Compute(gates, gates);
T
tensor-tang 已提交
378 379
  vmul_d->Compute(gates, gates + d, gates + d, d);
  vmul_d->Compute(ct_1, gates + d2, gates + d2, d);
T
tensor-tang 已提交
380
  vadd_d->Compute(gates + d, gates + d2, ct, d);
T
tensor-tang 已提交
381 382
  /* H_t = act_cell(C_t) * ogated */
  vtanh_d->Compute(ct, gates + d2);
T
tensor-tang 已提交
383
  vmul_d->Compute(gates + d2, gates + d * 3, ht, d);
T
tensor-tang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
}

TEST(JitKernel, lstm) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100}) {
    int d4 = d * 4;
    int d3 = d * 3;
    std::vector<float> x(d4), xref(d4);
    std::vector<float> ct_1(d), ct_tgt(d), ht_tgt(d);
    std::vector<float> ct_ref(d), ht_ref(d);
    RandomVec<float>(d4, x.data(), -2.f, 2.f);
    RandomVec<float>(d, ct_1.data(), -2.f, 2.f);
    memcpy(xref.data(), x.data(), sizeof(float) * d4);
    std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
    const auto& ker =
        jit::KernelPool::Instance()
T
tensor-tang 已提交
400
            .template Get<jit::LSTMKernel<float>, const std::string&,
T
tensor-tang 已提交
401
                          const std::string&, const std::string&>(
T
tensor-tang 已提交
402
                act_gate, act_cand, act_cell, d, false);
T
tensor-tang 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    // below kernels are used to compute refer
    const auto& vsigmoid_3d =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(
            d3);
    const auto& vtanh_d =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vexp_1 =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(1);
    const auto& vmul_d =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const auto& vadd_d =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);

    float* x_data = x.data();
    float* xref_data = xref.data();
    const float* ct_1_data = ct_1.data();
    float* ct_tgt_data = ct_tgt.data();
    float* ht_tgt_data = ht_tgt.data();
    float* ct_ref_data = ct_ref.data();
    float* ht_ref_data = ht_ref.data();
    // compute once to check correctness
    lstm_ctht_ref(vsigmoid_3d, vtanh_d, vexp_1, d, xref_data, ct_1_data,
                  ct_ref_data, ht_ref_data);
    ker->ComputeCtHt(x_data, ct_1_data, ct_tgt_data, ht_tgt_data);
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ct_tgt_data[i], ct_ref_data[i], 1e-3);
      EXPECT_NEAR(ht_tgt_data[i], ht_ref_data[i], 1e-3);
    }

    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      lstm_ctht_better(vsigmoid_3d, vtanh_d, vmul_d, vadd_d, d, xref_data,
                       ct_1_data, ct_ref_data, ht_ref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      lstm_ctht_ref(vsigmoid_3d, vtanh_d, vexp_1, d, xref_data, ct_1_data,
                    ct_ref_data, ht_ref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->ComputeCtHt(x_data, ct_1_data, ct_tgt_data, ht_tgt_data);
    }
    auto ttgte = GetCurrentUS();
449 450 451 452
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit) takes: " << (tmkle - tmkls) / repeat
             << " us, tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
453 454 455
  }
}

T
tensor-tang 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
void vscal_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}
void vscal_inp_ref(const int n, const float a, float* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(x, tmp);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
  paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif

TEST(JitKernel, vscal) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    std::memcpy(y.data(), x.data(), sizeof(float) * d);
    float a = 2.f;
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const float* x_data = x.data();
    float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto trefs1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_ref(d, a, y_data);
    }
    auto trefe1 = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_mkl(d, a, y_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_intri8(d, a, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      auto si2 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_inp_intri8(d, a, y_data);
      }
      auto si3 = GetCurrentUS();
534 535
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
               << " us, inplace: " << (si3 - si2) / repeat;
T
tensor-tang 已提交
536 537 538 539 540
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
541
      ker->Compute(&a, x_data, ztgt_data, d);
T
tensor-tang 已提交
542 543 544 545
    }
    auto ttgte = GetCurrentUS();
    auto ttgts1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
546
      ker->Compute(&a, y_data, y_data, d);
T
tensor-tang 已提交
547 548
    }
    auto ttgte1 = GetCurrentUS();
549 550 551
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, inplace takes: " << (trefe1 - trefs1) / repeat
T
tensor-tang 已提交
552
#ifdef PADDLE_WITH_MKLML
553 554
             << " us, mkl inplace takes: " << (tmkle - tmkls) / repeat
             << " us, "
T
tensor-tang 已提交
555
#else
556
             << " us, "
T
tensor-tang 已提交
557
#endif
558 559
             << "tgt takes: " << (ttgte - ttgts) / repeat
             << "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat;
T
tensor-tang 已提交
560 561 562 563 564
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}
T
tensor-tang 已提交
565

T
tensor-tang 已提交
566 567 568 569 570 571
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
572
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
573
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
574 575 576 577 578 579 580
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
581

T
tensor-tang 已提交
582 583 584
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
585
}
T
tensor-tang 已提交
586
#endif
T
tensor-tang 已提交
587

T
tensor-tang 已提交
588 589
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
590
  for (int d : {7, 8, 15, 16, 20, 30, 256, 512, 1000, 1024}) {
T
tensor-tang 已提交
591 592 593 594 595 596 597 598 599 600
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
601
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
602
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
603
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
604
    }
T
tensor-tang 已提交
605
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
606

T
tensor-tang 已提交
607 608
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
609
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
610
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
611
    }
T
tensor-tang 已提交
612 613
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
614

T
tensor-tang 已提交
615 616 617 618
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
619
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
620 621
      }
      auto si1 = GetCurrentUS();
622
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
623 624 625 626 627
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
628
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
629 630 631
    }
    auto ttgte = GetCurrentUS();

632 633
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
634
#ifdef PADDLE_WITH_MKLML
635
             << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
636
#else
637
             << " us, "
T
tensor-tang 已提交
638
#endif
639
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vadd_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_ref(d, x_data, y_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
702
      VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
703 704 705
    }
#endif

T
tensor-tang 已提交
706 707
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
708
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
709 710 711
    }
    auto ttgte = GetCurrentUS();

712 713
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
714
#ifdef PADDLE_WITH_MKLML
715
             << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
716
#else
717
             << " us, "
T
tensor-tang 已提交
718
#endif
719
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
720 721 722 723 724 725
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
726 727 728 729 730 731 732 733 734 735 736
void vaddrelu_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}
void vaddrelu_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VReluKernel<float>>& vrelu,
T
tensor-tang 已提交
737 738
    const float* x, const float* y, float* z, int d) {
  vadd->Compute(x, y, z, d);
T
tensor-tang 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
  vrelu->Compute(z, z);
}

TEST(JitKernel, vaddrelu) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddReluKernel<float>>(d);
    const auto& vadd =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const auto& vrelu =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_ref(d, x_data, y_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
766
      vaddrelu_better(vadd, vrelu, x_data, y_data, zref_data, d);
T
tensor-tang 已提交
767 768 769 770
    }
    auto tmkle = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
771
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
772 773
    }
    auto ttgte = GetCurrentUS();
774 775 776 777
    VLOG(30) << "Vec size " << d
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better takes: " << (tmkle - tmkls) / repeat << " us, "
             << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
778 779 780 781 782 783
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
784 785 786 787
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
788
  const auto& plstm1 =
T
tensor-tang 已提交
789
      jit::KernelPool::Instance()
T
tensor-tang 已提交
790
          .template Get<jit::LSTMKernel<float>, const std::string&,
T
tensor-tang 已提交
791
                        const std::string&, const std::string&>(
T
tensor-tang 已提交
792
              act_gate, act_cand, act_cell, frame_size, false);
T
tensor-tang 已提交
793
  const auto& plstm2 =
T
tensor-tang 已提交
794
      jit::KernelPool::Instance()
T
tensor-tang 已提交
795
          .template Get<jit::LSTMKernel<float>, const std::string&,
T
tensor-tang 已提交
796
                        const std::string&, const std::string&>(
T
tensor-tang 已提交
797 798 799 800 801 802 803
              act_gate, act_cand, act_cell, frame_size, false);
  const auto& peephole =
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, const std::string&,
                        const std::string&, const std::string&>(
              act_gate, act_cand, act_cell, frame_size, true);
  EXPECT_TRUE(plstm1 != peephole);
T
tensor-tang 已提交
804

T
tensor-tang 已提交
805
  const auto& pvmul_f =
T
tensor-tang 已提交
806
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
807 808
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
809

T
tensor-tang 已提交
810
  const auto& pvmul_d =
T
tensor-tang 已提交
811
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
812 813
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
T
tensor-tang 已提交
814

T
tensor-tang 已提交
815
  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulfjit4");
T
tensor-tang 已提交
816 817 818 819 820
#if defined(__APPLE__) || defined(__OSX__) || defined(_WIN32)
  EXPECT_EQ(pvmul_from_key, nullptr);
#else
  EXPECT_EQ(pvmul_from_key, pvmul_f);
#endif
T
tensor-tang 已提交
821
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulfjit");
T
tensor-tang 已提交
822
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
823
}