creation.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops
17 18 19
from paddle.fluid.framework import core, dygraph_only
from paddle.fluid.framework import _current_expected_place, _get_paddle_place
from paddle.tensor import to_tensor, max
20
from paddle.fluid.data_feeder import convert_dtype
21 22
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
23

24 25
import numpy as np

26 27 28 29 30 31 32 33 34 35 36 37 38
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


39
def _infer_dense_shape(indices, values):
40 41 42
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
43 44 45 46
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
47 48


49 50 51 52
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
53 54 55
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
56 57 58 59 60 61
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


62 63 64 65 66 67 68
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


69 70 71 72 73 74 75
def sparse_coo_tensor(indices,
                      values,
                      shape=None,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
76
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices
77 78 79 80 81 82 83 84
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
85
            original dense tensor. If not provided the smallest shape will be inferred to
86
            hold all elements.
87
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
88
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
89
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
90
            except for python float number which gets dtype from ``get_default_type`` .
91 92 93
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
109
            dense_shape = [3, 3]
110
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape)
111 112 113 114 115 116 117
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

118 119
    if in_dynamic_mode():
        place = _get_place(place)
120

121 122 123 124 125 126 127 128 129
        if not isinstance(indices, core.eager.Tensor):
            indices = to_tensor(indices,
                                dtype=None,
                                place=place,
                                stop_gradient=True)
        if not isinstance(values, core.eager.Tensor):
            values = to_tensor(values, dtype, place, stop_gradient)
        if len(indices.shape) != 2:
            raise ValueError("'indices' must be 2-D.")
130

131 132
        nnz = indices.shape[1]
        sparse_dim = indices.shape[0]
133

134
        _check_indices_dtype(indices.dtype)
135

136 137 138 139
        if nnz != values.shape[0]:
            raise ValueError(
                "the indices and values must have same number of non-zero, but get {} and {}"
                .format(nnz, values.shape[0]))
140

141
        dense_dim = len(values.shape) - 1
142

143 144
        if not indices.place._equals(place):
            indices = indices._copy_to(place, False)
145

146 147 148 149
        if not values.place._equals(place):
            values = values._copy_to(place, False)
        values = _handle_dtype(values, dtype)
        values.stop_gradient = stop_gradient
150

151
        min_shape = _infer_dense_shape(indices, values)
152

153 154 155 156 157 158 159 160 161 162 163
        if shape is None:
            shape = min_shape
        else:
            if shape < min_shape:
                raise ValueError(
                    "the minimun shape required is {}, but get {}".format(
                        min_shape, shape))
            if len(shape) != sparse_dim + dense_dim:
                raise ValueError(
                    "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}"
                    .format(sparse_dim, dense_dim, len(shape)))
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        return _C_ops.sparse_sparse_coo_tensor(values, indices, shape)

    else:
        op_type = 'sparse_sparse_coo_tensor'
        inputs = {'values': values, 'indices': indices}
        if shape[0] is None:
            shape[0] = -1
        attrs = {'dense_shape': shape}
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(dtype)
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs={'out': out},
                         attrs=attrs)
        return out
180 181 182 183 184 185 186 187 188 189 190 191


#TODO: need to support shape is None
@dygraph_only
def sparse_csr_tensor(crows,
                      cols,
                      values,
                      shape,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
192
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the
193
    ``crows``, ``cols`` and ``values``.
194
    Currently, the crows and cols of each batch must be incrementd.
195 196

    Args:
197 198 199
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the
            starting position of the first non-zero element of each row in values.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
200
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
201
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
202 203 204
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
205
            original dense tensor.
206
            hold all elements.
207
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
208
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
209
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
210
            except for python float number which gets dtype from ``get_default_type`` .
211 212 213
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
231
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
232 233 234 235 236 237
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
238 239 240

    place = _get_place(place)

241 242 243 244 245 246
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
247 248 249 250 251

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
252
        raise ValueError(
253 254
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".
            format(shape))
Z
zhangkaihuo 已提交
255
    rows = shape[len(shape) - 2]
256

257
    if not crows.place._equals(place):
258
        crows = crows._copy_to(place, False)
259 260

    if not cols.place._equals(place):
261
        cols = cols._copy_to(place, False)
262 263

    if not values.place._equals(place):
264 265
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
266
    values.stop_gradient = stop_gradient
267 268 269 270 271 272 273 274

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

    if (len(cols) != len(values)):
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
Z
zhangkaihuo 已提交
275
        if crows.shape[0] != rows + 1:
276
            raise ValueError(
277
                "The length({}) of crows must be equal to the rows({})+1 of matrix."
Z
zhangkaihuo 已提交
278
                .format(crows.shape[0], rows))
279 280 281 282 283 284 285
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
                "the last value of crows must be equal the number of non-zero")
    else:
Z
zhangkaihuo 已提交
286
        if crows.shape[0] % (rows + 1) != 0:
287
            raise ValueError(
288
                "The length({}) of crows must be divisible the rows({})+1 of matrix."
Z
zhangkaihuo 已提交
289
                .format(crows.shape[0], rows))
290
    # TODO(zkh2016): check whether the value in crows and cols is legal
291

292 293
    return core.eager.sparse_csr_tensor(crows, cols, values, shape,
                                        stop_gradient)