creation.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops
17 18 19 20
from paddle.fluid.framework import core, dygraph_only
from paddle.fluid.framework import _current_expected_place, _get_paddle_place
from paddle.tensor import to_tensor, max
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
21

22 23
import numpy as np

24 25 26 27 28 29 30 31 32 33 34 35 36
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


37
def _infer_dense_shape(indices, values):
38 39 40
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
41 42 43 44
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
45 46


47 48 49 50
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
51 52 53
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
54 55 56 57 58 59
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


60 61 62 63 64 65 66
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
@dygraph_only
def sparse_coo_tensor(indices,
                      values,
                      shape=None,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices 
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. If not provided the smallest shape will be inferred to 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``indices`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
114
            dense_shape = [3, 3]
115
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape)
116 117 118 119 120 121 122
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

123 124
    place = _get_place(place)

125
    if not isinstance(indices, core.eager.Tensor):
126 127 128 129
        indices = to_tensor(indices,
                            dtype=None,
                            place=place,
                            stop_gradient=True)
130 131 132 133
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
    if len(indices.shape) != 2:
        raise ValueError("'indices' must be 2-D.")
134

135 136 137 138 139 140 141
    nnz = indices.shape[1]
    sparse_dim = indices.shape[0]

    _check_indices_dtype(indices.dtype)

    if nnz != values.shape[0]:
        raise ValueError(
142 143
            "the indices and values must have same number of non-zero, but get {} and {}"
            .format(nnz, values.shape[0]))
144 145 146

    dense_dim = len(values.shape) - 1

147
    if not indices.place._equals(place):
148
        indices = indices._copy_to(place, False)
149 150

    if not values.place._equals(place):
151 152
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
153 154
    values.stop_gradient = stop_gradient

155 156
    min_shape = _infer_dense_shape(indices, values)

157
    if shape is None:
158 159 160
        shape = min_shape
    else:
        if shape < min_shape:
161 162 163
            raise ValueError(
                "the minimun shape required is {}, but get {}".format(
                    min_shape, shape))
164 165
        if len(shape) != sparse_dim + dense_dim:
            raise ValueError(
166 167
                "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}"
                .format(sparse_dim, dense_dim, len(shape)))
168

169
    return _C_ops.sparse_sparse_coo_tensor(values, indices, shape)
170 171 172 173 174 175 176 177 178 179 180 181 182 183


#TODO: need to support shape is None
@dygraph_only
def sparse_csr_tensor(crows,
                      cols,
                      values,
                      shape,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the 
    ``crows``, ``cols`` and ``values``.
184
    Currently, the crows and cols of each batch must be incrementd.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    Args:
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the 
            starting position of the first non-zero element of each row in values. 
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``crow``, ``cols`` and ``values`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
227
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
228 229 230 231 232 233
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
234 235 236

    place = _get_place(place)

237 238 239 240 241 242
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
243 244 245 246 247

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
248
        raise ValueError(
249 250
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".
            format(shape))
Z
zhangkaihuo 已提交
251
    rows = shape[len(shape) - 2]
252

253
    if not crows.place._equals(place):
254
        crows = crows._copy_to(place, False)
255 256

    if not cols.place._equals(place):
257
        cols = cols._copy_to(place, False)
258 259

    if not values.place._equals(place):
260 261
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
262
    values.stop_gradient = stop_gradient
263 264 265 266 267 268 269 270

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

    if (len(cols) != len(values)):
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
Z
zhangkaihuo 已提交
271
        if crows.shape[0] != rows + 1:
272
            raise ValueError(
273
                "The length({}) of crows must be equal to the rows({})+1 of matrix."
Z
zhangkaihuo 已提交
274
                .format(crows.shape[0], rows))
275 276 277 278 279 280 281
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
                "the last value of crows must be equal the number of non-zero")
    else:
Z
zhangkaihuo 已提交
282
        if crows.shape[0] % (rows + 1) != 0:
283
            raise ValueError(
284
                "The length({}) of crows must be divisible the rows({})+1 of matrix."
Z
zhangkaihuo 已提交
285
                .format(crows.shape[0], rows))
286
    # TODO(zkh2016): check whether the value in crows and cols is legal
287

288 289
    return core.eager.sparse_csr_tensor(crows, cols, values, shape,
                                        stop_gradient)